SOME LOWER BOUNDS FOR THE NUMERICAL RADIUS OF
HILBERT SPACE OPERATORS

ALI ZAMANI

Communicated by M. Martin

Abstract. We show that if \(T \) is a bounded linear operator on a complex
Hilbert space, then
\[
\frac{1}{2} \| T \| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}} \sqrt{w^2(T) - c^2(T)} \leq w(T),
\]
where \(w(\cdot) \) and \(c(\cdot) \) are the numerical radius and the Crawford number, respectively. We then apply it to prove that for each \(t \in [0, \frac{1}{2}) \) and natural number \(k \),
\[
\frac{(1 + 2t)^{\frac{1}{2k}}}{2^\frac{k}{2}} m(T) \leq w(T),
\]
where \(m(T) \) denotes the minimum modulus of \(T \). Some other related results
are also presented.

1. Introduction and preliminaries

Let \(\mathbb{B}(H) \) denote the \(C^* \)-algebra of all bounded linear operators on a complex
Hilbert space \(H \) with an inner product \(\langle \cdot, \cdot \rangle \) and the corresponding norm \(\| \cdot \| \). If
\(\dim H = n \), we identify \(\mathbb{B}(H) \) with the space \(\mathcal{M}_n \) of all \(n \times n \) matrices with entries
in the complex field. For \(T \in \mathbb{B}(H) \), let \(\| T \| \) and \(m(T) \) denote the usual operator
norm and the minimum modulus of \(T \), respectively. Here \(m(T) \) is defined to be
the largest number \(\alpha \geq 0 \) such that \(\|Tx\| \geq \alpha\|x\| \) \((x \in H) \). The numerical radius

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Dec. 9, 2016; Accepted: Jan. 30, 2017.

2010 Mathematics Subject Classification. Primary 47A12; Secondary 47A30.

Key words and phrases. Numerical radius, operator norm, inequality, Cartesian
decomposition.
and the Crawford number of $T \in \mathcal{B}(H)$ are defined by

$$w(T) = \sup \{ |\langle Tx, x \rangle| : x \in H, \|x\| = 1 \}$$

and

$$c(T) = \inf \{ |\langle Tx, x \rangle| : x \in H, \|x\| = 1 \},$$

respectively. These concepts are useful in studying linear operators and have attracted the attention of many authors in the last few decades (e.g., see [4, 8], and their references). It is well known that $w(\cdot)$ defines a norm on $\mathcal{B}(H)$ such that for all $T \in \mathcal{B}(H)$,

$$\frac{1}{2} \|T\| \leq w(T) \leq \|T\|. \quad (1.1)$$

The inequalities in (1.1) are sharp. The first inequality becomes an equality if $T^2 = 0$. The second inequality becomes an equality if T is normal. Any operator $T \in \mathcal{B}(H)$ can be represented as $T = H + iK$, the so-called Cartesian decomposition, where $H = \text{Re}(T) = \frac{T + T^*}{2}$ and $K = \text{Im}(T) = \frac{T - T^*}{2i}$ are called the real and imaginary parts of T. It has been shown in [7] that,

$$\sup \{ \|\alpha H + \beta K\| : \alpha, \beta \in \mathbb{R}, \alpha^2 + \beta^2 = 1 \} = w(T).$$

In particular, $\|H\| \leq w(T)$ and $\|K\| \leq w(T)$.

Concerning the inequality (1.1), Kittaneh [6] has shown the following precise estimate of $w(T)$ by using norm inequalities:

$$\frac{1}{\sqrt{2}} \sqrt{\|H^2 + K^2\|} \leq w(T) \leq \sqrt{\|H^2 + K^2\|}. \quad (1.2)$$

Obviously, (1.2) is sharper than the inequality of (1.1). Yamazaki [9] has used the Aluthge transform to improve the second inequality (1.1) so that

$$w(T) \leq \frac{1}{2} \left(\|T\| + w(\tilde{T}) \right).$$

Here \tilde{T} (the Aluthge transform of T) is defined as $\tilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}}$, where U is a partial isometry of the polar decomposition of T and $|T| = (T^*T)^{\frac{1}{2}}$ means the absolute value of T.

Further, it has been shown in [1] that,

$$\frac{1}{2} \sqrt{\|T\|^2 + \|T^*\|^2} + 2c(T^2) \leq w(T) \leq \frac{1}{2} \sqrt{\|T\|^2 + \|T^*\|^2} + 2w(T^2).$$

For more material about the numerical radius and other results on numerical radius inequality, see, e.g., [3], [5], and the references therein.

For $T \in \mathcal{B}(H)$, let us recall the abbreviated notations

$$|\cos|T = \inf \left\{ \frac{|\langle Tx, x \rangle|}{\|Tx\| \|x\|} : x \in H, \|Tx\| \neq 0 \right\}$$

and

$$|\sin|T = \sqrt{1 - |\cos|^2 T}.$$
In the next section, we establish some considerable improvement of the first inequality (1.1). More precisely, we prove that
\[
\frac{1}{2} \|T\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - c^2(T)}} \leq w(T)
\]
and
\[
\frac{1}{2} \|T\| \leq \max \left\{ \left| \sin \frac{T}{\sqrt{2}} \right|, \sqrt{w^2(T)} \right\} w(T) \leq w(T).
\]

Next, we will give some applications. Particularly, for each \(t \in [0, \frac{1}{2}) \) and natural number \(k \), we show that
\[
(1 + 2t)^{\frac{3}{2}} m(T) \leq w(T).
\]

2. Main results

In this section we present some lower bounds for the numerical radii of Hilbert space operators. We start our work with the following result.

Theorem 2.1. Let \(T \in \mathbb{B}(H) \). Then
\[
\frac{1}{2} \|T\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - c^2(T)}} \leq w(T).
\]

Proof. Clearly, \(\sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - c^2(T)}} \leq w(T) \). On the other hand, let \(x \in H \) with \(\|x\| \leq 1 \). Let \(\langle Tx, x \rangle = \lambda_x |\langle Tx, x \rangle| \) for some unit \(\lambda_x \in \mathbb{C} \). Hence \(\langle \lambda_x Tx, x \rangle = |\langle Tx, x \rangle| \geq 0 \). Let \(H + iK \) be the Cartesian decomposition of \(\lambda_x T \). Then \(\langle Hx, x \rangle + i\langle Kx, x \rangle = \langle \lambda_x Tx, x \rangle \geq 0 \). Hence
\[
\langle \lambda_x Tx, x \rangle = \langle Hx, x \rangle, \quad \langle Kx, x \rangle = 0.
\]

We have
\[
\frac{1}{4} \|Tx\|^2 = \frac{1}{4} \left(\|\lambda_x Tx - \langle \lambda_x Tx, x \rangle x\|^2 + |\langle Tx, x \rangle|^2 \right)
\]
\[
= \frac{1}{4} \left(\|Hx - \langle Hx, x \rangle x + iKx\|^2 + |\langle Tx, x \rangle|^2 \right) \quad \text{(since } \langle Kx, x \rangle = 0 \text{)}
\]
\[
\leq \frac{1}{4} \left(\|Hx - \langle Hx, x \rangle x\|^2 + \|Kx\|^2 + |\langle Tx, x \rangle|^2 \right)
\]
\[
\leq \frac{1}{4} \left(\left(\sqrt{\|Hx\|^2 - |\langle Hx, x \rangle|^2} + \|Kx\| \right)^2 + |\langle Tx, x \rangle|^2 \right)
\]
\[
\leq \frac{1}{4} \left(\left(\sqrt{w^2(T) - |\langle Tx, x \rangle|^2} + w(T) \right)^2 + |\langle Tx, x \rangle|^2 \right) \quad \text{(since } \|Hx\|, \|Kx\| \leq w(T) \text{ and } |\langle Tx, x \rangle| = |\langle Hx, x \rangle| \text{)}
\]
\[
= \frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - |\langle Tx, x \rangle|^2}.
\]
Hence
\[
\frac{1}{2} \|Tx\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - |\langle Tx, x \rangle|^2}} \quad (\|x\| \leq 1). \tag{2.2}
\]
If we replace \(x\) by \(\frac{x}{\|x\|}\) in the above inequality, then we obtain
\[
\frac{1}{2} \|Tx\| \leq \|x\| \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - \langle T \left(\frac{x}{\|x\|}, x \right) \rangle}}.
\]
Thus
\[
\frac{1}{2} \|Tx\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - c^2(T)}}.
\]
Taking the supremum over \(x \in H\) with \(\|x\| \leq 1\) in the above inequality we deduce the desired inequality. \(\square\)

Remark 2.2. Let \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\). Then \(\|A\| = w(A) = c(A) = 1\). Thus
\[
\frac{1}{2} \|A\| = \frac{1}{2} \leq \sqrt{\frac{w^2(A)}{2} + \frac{w(A)}{2} \sqrt{w^2(A) - c^2(A)}} = \frac{\sqrt{2}}{2} < w(A) = 1.
\]
Hence the inequalities in Theorem 2.1 can be strict.

Corollary 2.3. Let \(T \in \mathcal{B}(H)\). Then
\[
\|Tx\|^2 + |\langle Tx, x \rangle|^2 \leq 4w^2(T) \quad (x \in H, \|x\| \leq 1).
\]
Proof. Let \(x \in H\) with \(\|x\| \leq 1\). By (2.1) it follows that
\[
\frac{1}{4} \|Tx\|^2 \leq \frac{1}{4} \left(\left(\sqrt{w^2(T) - |\langle Tx, x \rangle|^2} + w(T) \right)^2 + |\langle Tx, x \rangle|^2 \right)
\]
\[
\leq \frac{1}{4} \left(2 \left(\sqrt{w^2(T) - |\langle Tx, x \rangle|^2} \right)^2 + 2w^2(T) + |\langle Tx, x \rangle|^2 \right)
\]
(by the arithmetic geometric mean inequality)
\[
= \frac{1}{4} \left(4w^2(T) - |\langle Tx, x \rangle|^2 \right),
\]
which gives \(\|Tx\|^2 + |\langle Tx, x \rangle|^2 \leq 4w^2(T)\). \(\square\)

Corollary 2.4. Let \(A = [a_{ij}] \in \mathcal{M}_n\). Then
\[
\sum_{k=1}^n |a_{ki}|^2 \leq w^2(A) + w(A)\sqrt{w^2(A) - |a_{ii}|^2} \quad (1 \leq i \leq n).
\]
Proof. Let \(x = [0, \cdots, 0, 1, 0, \cdots, 0]^t \) with 1 in place of \(i \). Then \(Ax = [a_{1i}, a_{2i}, \cdots, a_{ni}]^t \) and \(\langle Ax, x \rangle = a_{ii} \). So, by (2.2) we obtain

\[
\frac{1}{2} \sum_{k=1}^n |a_{ki}|^2 = \frac{1}{2} \|Ax\| \leq \sqrt{\frac{w^2(A)}{2} + \frac{w(A)}{2} \sqrt{w^2(A) - |\langle Ax, x \rangle|^2}} = \sqrt{\frac{w^2(A)}{2} + \frac{w(A)}{2} \sqrt{w^2(A) - |a_{ii}|^2}}.
\]

This yields

\[
\sum_{k=1}^n |a_{ki}|^2 \leq w^2(A) + w(A) \sqrt{w^2(A) - |a_{ii}|^2}.
\]

□

Theorem 2.5. Let \(T \in \mathfrak{B}(H) \). Then

\[
\frac{1}{2} \|T\| \leq \max \left\{ |\sin T, \sqrt{\frac{2}{2}} | \right\} w(T) \leq w(T).
\]

Proof. Clearly, \(\max \left\{ |\sin T, \sqrt{\frac{2}{2}} | \right\} w(T) \leq w(T) \). On the other hand, let \(x \in H \) with \(\|x\| \leq 1 \). By (2.2) we have

\[
\frac{1}{2} \|Tx\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - \|Tx, x\|^2}}.
\]

Hence

\[
\frac{1}{2} \|Tx\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2} \sqrt{w^2(T) - \|Tx\|^2} \cos^2 T},
\]

or equivalently,

\[
\|Tx\|^2 - 2w^2(T) \leq 2w(T) \sqrt{w^2(T) - \|Tx\|^2} \cos^2 T. \quad (2.3)
\]

We consider two cases.

Case 1. \(\|Tx\|^2 - 2w^2(T) \leq 0 \). So we get \(\|Tx\| \leq \sqrt{2} w(T) \) and hence

\[
\frac{1}{2} \|T\| \leq \frac{\sqrt{2}}{2} w(T). \quad (2.4)
\]

Case 2. \(\|Tx\|^2 - 2w^2(T) > 0 \). It follows from (2.3) that

\[
\|Tx\|^4 - 4\|Tx\|^2 w^2(T) + 4w^4(T) \leq 4w^4(T) - 4w^2(T) \|Tx\|^2 |\cos^2 T|.
\]

This implies

\[
\|Tx\|^2 \leq 4 \left(1 - |\cos^2 T| \right) w^2(T)
\]

which yields

\[
\frac{1}{2} \|Tx\| \leq |\sin Tw(T)|.
\]

Taking the supremum over \(x \in H \) with \(\|x\| \leq 1 \) in the above inequality we get

\[
\frac{1}{2} \|T\| \leq |\sin Tw(T)|. \quad (2.5)
\]
Finally, by (2.4) and (2.5) we conclude the desired inequality.

Remark 2.6. Let \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 + i \end{bmatrix} \). Simple computations show that \(\|A\| = w(A) = \sqrt{2} \) and \(|\sin |A = \sqrt{2} - 1 \). Thus
\[
\frac{1}{2} \|A\| = \frac{\sqrt{2}}{2} < \max \left\{ |\sin |A, \frac{\sqrt{2}}{2} \right\} w(A) = \frac{\sqrt{2}}{2} \times \sqrt{2} = 1 < w(A) = \sqrt{2}.
\]
Hence the inequalities in Theorem 2.5 can be strict.

As a consequence of Theorem 2.5 we have the following result.

Corollary 2.7. Let \(T, S \in \mathbb{B}(H) \). Then
\[
w(TS) \leq 4 \max \left\{ |\sin |T, \frac{\sqrt{2}}{2} \right\} \max \left\{ |\sin |S, \frac{\sqrt{2}}{2} \right\} w(T)w(S) \leq 4w(T)w(S).
\]

Proof. Applying the second inequality of (1.1) and Theorem 2.5, we get
\[
w(TS) \leq \|TS\| \leq \|T\|\|S\|
\]
\[
\leq 2 \max \left\{ |\sin |T, \frac{\sqrt{2}}{2} \right\} w(T) \times 2 \max \left\{ |\sin |S, \frac{\sqrt{2}}{2} \right\} w(S)
\]
\[
= 4 \max \left\{ |\sin |T, \frac{\sqrt{2}}{2} \right\} \max \left\{ |\sin |S, \frac{\sqrt{2}}{2} \right\} w(T)w(S) \leq 4w(T)w(S).
\]

A fundamental inequality for the numerical radius is the power inequality, which says that for \(T \in \mathbb{B}(H) \),
\[
w(T^k) \leq w^k(T)
\]
for \(k = 1, 2, \cdots \) (see, e.g., [5]). We are now in a position to establish one of our main results.

Theorem 2.8. Let \(T \in \mathbb{B}(H) \). For each \(t \in [0, \frac{1}{2}] \) and natural number \(k \),
\[
\frac{(1 + 2t)^{\frac{\pi}{4}}}{2^t} m(T) \leq w(T).
\]

Proof. Let \(t \in [0, \frac{1}{2}] \) and \(k \in \mathbb{N} \). Let \(x \in H \) with \(\|x\| \leq 1 \). We consider two cases.

Case 1. \(\|Tx\|^2 - 2w^2(T) \leq 0 \). So we have
\[
w^2(T) - 2tw(T)\Re\langle Tx, x \rangle + (t^2 - \frac{1}{4})\|Tx\|^2
\]
\[
\geq w^2(T) - 2tw(T)\Re\langle Tx, x \rangle + 2(t^2 - \frac{1}{4})w^2(T)
\]
\[
= 2w^2(T) \left| t - \frac{\langle Tx, x \rangle}{2w(T)} \right|^2 + \frac{w^2(T) - |\langle Tx, x \rangle|^2}{2} \geq 0.
\]
Hence
\[w^2(T) - 2tw(T)\text{Re}\langle Tx, x \rangle + (t^2 - \frac{1}{4})\|Tx\|^2 \geq 0. \] (2.6)

Case 2. \(\|Tx\|^2 - 2w^2(T) > 0\). It follows from (2.2) that
\[\frac{1}{2}\|Tx\| \leq \sqrt{\frac{w^2(T)}{2} + \frac{w(T)}{2}\sqrt{w^2(T) - |\langle Tx, x \rangle|^2}}. \]
This implies
\[\left(\frac{1}{4}\|Tx\|^2 - \frac{w^2(T)}{2}\right)^2 \geq \frac{w^2(T)}{4} \left(w^2(T) - |\langle Tx, x \rangle|^2\right) \]
which yields
\[4w^2(T)\|Tx\|^2 - \|Tx\|^4 - 4w^2(T)|\langle Tx, x \rangle|^2 \geq 0. \] (2.7)

By (2.7), we get
\[w^2(T) - 2tw(T)\text{Re}\langle Tx, x \rangle + (t^2 - \frac{1}{4})\|Tx\|^2 \]
whence
\[w^2(T) - 2tw(T)\text{Re}\langle Tx, x \rangle + (t^2 - \frac{1}{4})\|Tx\|^2 \geq 0. \] (2.8)

By (2.6) and (2.8), we obtain
\[2tw(T)\text{Re}\langle Tx, x \rangle \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2. \]

If we replace \(T\) by \(\frac{\text{Re}\langle Tx, x \rangle}{|\text{Re}\langle Tx, x \rangle|} T\) in the above inequality, then we get
\[2tw(T)|\text{Re}\langle Tx, x \rangle| \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2 \quad (\|x\| \leq 1). \] (2.9)
Furthermore, if we replace \(T\) by \(e^{i\theta}T\) in (2.9), then we deduce
\[2tw(T)|\text{Re}(e^{i\theta} \langle Tx, x \rangle)| \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2. \]

Since \(\sup \{|\text{Re}(e^{i\theta} \langle Tx, x \rangle)| : \theta \in \mathbb{R}\} = |\langle Tx, x \rangle|\), by taking the supremum over \(\theta \in \mathbb{R}\) in the above inequality we reach
\[2tw(T)|\langle Tx, x \rangle| \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2. \] (2.10)

By (2.10), we get
\[2tw(T)|\langle Tx, x \rangle| \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2 \leq w^2(T) + (t^2 - \frac{1}{4})m^2(T). \]
Thus
\[2tw(T)|\langle Tx, x \rangle| \leq w^2(T) + (t^2 - \frac{1}{4})m^2(T). \] (2.11)
By taking the supremum over \(x \in H\) with \(\|x\| = 1\) in (2.11), we obtain
\[
2tw^2(T) \leq w^2(T) + (t^2 - \frac{1}{4})m^2(T),
\]
or equivalently,
\[
\frac{(1 + 2t)^{1/2}}{2}m(T) \leq w(T).
\]
Replacing \(T\) by \(T^k\) in the last inequality gives
\[
\frac{(1 + 2t)^{1/2}}{2}m(T^k) \leq w(T^k).
\]
Since \(m^k(T) \leq m(T^k)\) and \(w(T^k) \leq w^k(T)\), the above inequality becomes
\[
\frac{(1 + 2t)^{1/2}}{2}m^k(T) \leq w^k(T).
\]
Thus
\[
\frac{(1+2t)^{1/2}}{2^k}m(T) \leq w(T).\]

\textbf{Remark 2.9.} Recall that an operator \(T \in \mathcal{B}(H)\) is said to be idempotent if \(T^2 = T\) and an involution if \(T^2 = I\). It is well-known that, if \(T\) is idempotent such that \(T \neq 0\), then \(w(T) = \frac{1}{2}(1 + \|T\|)\) and if \(T\) is involution then, \(w(T) = \frac{1}{2}(\|T\| + \|T\|^{-1})\) (see, e.g., [1]). So, by Theorem 2.8 for each \(t \in [0, \frac{1}{2})\) and \(k \in \mathbb{N}\), the following statements hold:

(i) If \(T\) is an idempotent operator such that \(T \neq 0\), then
\[
2^{1-k}(1 + 2t)^{1/2} m(T) \leq 1 + \|T\|.
\]

(ii) If \(T\) is an involution operator, then
\[
2^{1-k}(1 + 2t)^{1/2} m(T) \leq \|T\| + \|T\|^{-1}.
\]

\textbf{Corollary 2.10.} Let \(T \in \mathcal{B}(H)\). For each \(t \in [0, \frac{1}{2})\),
\[
\frac{\|T\|^2}{2} \leq \sqrt{\frac{w^2(T) - 2tw(T)\mu(T)}{1 - 4t^2}},
\]
where \(\mu(T) = \inf \{|\text{Re}\langle Tx, x \rangle| : x \in H, \|x\| \leq 1\}\).

\textbf{Proof.} Let \(t \in [0, \frac{1}{2})\) and let \(x \in H\) with \(\|x\| \leq 1\). By (2.9), we have
\[
2tw(T)|\text{Re}\langle Tx, x \rangle| \leq w^2(T) + (t^2 - \frac{1}{4})\|Tx\|^2.
\]
Since \(\mu(T) = \inf \{|\text{Re}\langle Tx, x \rangle| : x \in H, \|x\| \leq 1\}\), so by the above inequality we obtain
\[
w^2(T) - 2tw(T)\mu(T) \geq w^2(T) - 2tw(T)|\text{Re}\langle Tx, x \rangle| \geq (\frac{1}{4} - t^2)\|Tx\|^2.
\]
Hence
\[
(\frac{1}{4} - t^2)\|Tx\|^2 \leq w^2(T) - 2tw(T)\mu(T).
\]
By taking the supremum over $x \in H$ with $\|x\| = 1$ in the above inequality, we wet
\[
\frac{1}{4} - t^2 \|T\|^2 \leq w^2(T) - 2tw(T)\mu(T).
\]
Now, by the last inequality, we deduce the desired inequality. \square

Let us recall that by [2, Lemma 2.1] we have
\[
w(x \otimes y) = \frac{1}{2} \left(|\langle x, y \rangle| + \|x\||y\| \right),
\]
for all $x, y \in H$. Here, $x \otimes y$ denotes the rank one operator in $B(H)$ defined by $(x \otimes y)(z) := \langle z, y \rangle x$ for all $z \in H$. The following result is a reverse the Cauchy-Schwarz inequality in the setting of Hilbert spaces.

Corollary 2.11. Let $x, y \in H$. For each $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$, the following statements hold.

(i) \[
\left(\frac{1}{\max \left\{ \sqrt{1 - \inf \left\{ \frac{\|\langle x, z \rangle\|^2}{\|x\|^2\|z\|^2} : z \in H, \langle z, y \rangle \neq 0 \right\}}, \frac{\sqrt{2}}{4} \right\}} - 1 \right) \|x\||y\| \leq |\langle x, y \rangle|.
\]

(ii) \[
\left(2^{1 - \frac{k}{2}} (1 + 2t)^{\frac{k}{2}} \inf \left\{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \right\} - \|y\| \right) \|x\| \leq |\langle x, y \rangle|.
\]

Proof. Simple computations show that
\[
|\sin |(x \otimes y)| = \sqrt{1 - \inf \left\{ \frac{|\langle x, z \rangle|^2}{\|x\|^2\|z\|^2} : z \in H, \langle z, y \rangle \neq 0 \right\}}, \quad \left(2.12 \right)
\]
and
\[
m(x \otimes y) = \|x\| \inf \left\{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \right\}. \quad \left(2.13 \right)
\]
So, by Theorem 2.5 and (2.12), we obtain
\[
\frac{1}{2} \|x\||y\| \leq \max \left\{ \left| \sin |(x \otimes y)|, \frac{\sqrt{2}}{2} \right|, \frac{1}{2} \left(|\langle x, y \rangle| + \|x\||y\| \right) \right\},
\]
or equivalently,
\[
\left(\frac{1}{\max \left\{ \sqrt{1 - \inf \left\{ \frac{\|\langle x, z \rangle\|^2}{\|x\|^2\|z\|^2} : z \in H, \langle z, y \rangle \neq 0 \right\}}, \frac{\sqrt{2}}{4} \right\}} - 1 \right) \|x\||y\| \leq |\langle x, y \rangle|.
\]
Furthermore, for each $t \in [0, \frac{1}{2})$ and $k \in \mathbb{N}$, by Theorem 2.8 and (2.13) we get
\[
\frac{(1 + 2t)^{\frac{k}{2}}}{2^{\frac{k}{2}}} \|x\| \inf \left\{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \right\} \leq \frac{1}{2} \left(|\langle x, y \rangle| + \|x\||y\| \right),
\]
or equivalently,
\[
\left(2^{1 - \frac{k}{2}} (1 + 2t)^{\frac{k}{2}} \inf \left\{ |\langle z, y \rangle| : z \in H, \|z\| = 1 \right\} - \|y\| \right) \|x\| \leq |\langle x, y \rangle|.
\]

Acknowledgments. The author expresses his gratitude to the referee for his/her comments towards an improved version of the paper.
References

Department of Mathematics, Farhangian University, Iran.
E-mail address: zamani.ali85@yahoo.com