Geometric Probabilities for Convex Bodies of Large Revolution in the Euclidean Space E_3 (II)

Andrei Duma Marius Stoka *

FB Mathematik, Fernuniversität - GHS
Lützowstr. 125, D-58084 Hagen, Germany

Dipartimento di Matematica, Università di Torino
Via C. Alberto, 10, I-10123 Torino, Italy

Abstract. In this paper we solve problems of Buffon type for an arbitrary convex body of revolution and four different types of lattices.

MSC 2000: 60D05, 52A22
Keywords: geometric probability, stochastic geometry, random sets, random convex sets and integral geometry

Buffon’s problem for an arbitrary convex body K and a lattice of parallelograms in the Euclidean space E_2 has been investigated in [1]. In [5] this problem is considered for two different types of lattices in the space E_2 namely, for those lattices whose fundamental cell is a triangle or a regular hexagon. Buffon’s Needle Problem for a lattice of right-angled parallelepipeds in the n-dimensional Euclidean space was solved in [9]. In her dissertation, E. Bosetto has answered the corresponding questions for other types of lattices in the 3-dimensional space and for test bodies like the needle or the sphere. In [7] Buffon’s problem is solved for a lattice of right-angled parallelepipeds in the 3-dimensional space (which will be denoted here by R_1) and an arbitrary convex body of revolution. In the present paper we prove results of this type for arbitrary convex bodies of revolution and four types of lattices in E_3, considered also by E. Bosetto.

*Work partially supported by C.N.R.-G.N.S.A.G.A.

0138-4821/93 $ 2.50 © 2002 Heldermann Verlag
Let \(K \) be an arbitrary convex body of revolution with centroid \(S \) and oriented axis of rotation \(d \). Clearly, the axis \(d \) is determined by the angle \(\theta \) between \(d \) and the \(z \)-axis and by the angle \(\varphi \) between the projection of \(d \) on the \(xy \)-plane and the \(x \)-axis and we express this by writing \(d = d(\theta, \varphi) \). If for a given \(d = d(\theta, \varphi) \), the body \(K \) is tangent to the \(xy \)-plane such that the centroid \(S \) lies in the upper half-space, we denote by \(p(\theta, \varphi) \) the distance from \(S \) to the \(xy \)-plane. Then the length of the projection of \(K \) on the \(z \)-axis is given by \(L(\theta, \varphi) = p(\theta, \varphi) + p(\pi - \theta, \varphi) \). Note that \(p(\theta, \varphi) \) does actually depend only on the angle \(\theta \) and moreover, since \(K \) is a body of revolution about the axis \(d \) the value \(p(\theta, \varphi) \) is invariant to any rotation about this axis, say by an \(\psi \). Now let \(F \) be a fundamental cell of the lattice \(\mathcal{R} \) and assume that the two 3-dimensional random variables defined by the coordinates of \(S \) and by the triple \((\theta, \varphi, \psi)\) are uniformly distributed in the cell \(F \) and in \([0, \pi] \times [0, 2\pi] \times [0, 2\pi]\) respectively. We are interested in the probability \(p_{K, \mathcal{R}} \) that the body \(K \) intersects the lattice \(\mathcal{R} \). Furthermore, we will assume, as it is done in all papers cited here, that the body \(K \) is small with respect to the lattice \(\mathcal{R} \). In order to recall briefly this concept, consider for fixed \((\theta, \varphi) \in [0, \pi] \times [0, 2\pi]\) the set of all points \(P \in F \) for which the body \(K \) with centroid \(P \) and rotation axis \(d = d(\theta, \varphi) \) does not intersect the boundary \(\partial F \) and let \(F(\theta, \varphi) \) be the closure of this open subset of \(F \). We say that the body \(K \) is small with respect to \(\mathcal{R} \), if the polyhedrons sides of \(F(\theta, \varphi) \) and \(F \) are then clearly pairwise parallel.

Denote by \(M_F \) the set of all test bodies \(K \) whose centroid \(S \) lies in \(F \) and by \(N_F \) the set of bodies \(K \) that are completely contained in \(F \). Of course, we can identify these sets with subsets of \(\mathbb{R}^6 \) and if \(\mu \) denotes the Lebesgue measure then the probability is given by

\[
(1) \quad p_{K, \mathcal{R}} = 1 - \frac{\mu(N_F)}{\mu(M_F)}.
\]

Using the cinematic measure (see [6])

\[
(2) \quad dK = dx \wedge dy \wedge dz \wedge d\Omega \wedge d\psi,
\]

where \(x, y, z \) are the coordinates of \(S \), \(d\Omega = \sin \theta d\theta \wedge d\varphi \) and \(\psi \) is an angle of rotation about \(d \) we can compute

\[
(3) \quad \mu(M_F) = \int_{\{x,y,z\in F\}} \sin \theta \, dx \wedge dy \wedge dz = 8\pi^2 \, \text{Vol}(F),
\]

\[
(4) \quad \mu(N_F) = \int_{\{x,y,z\in F(\theta,\varphi)\}} \sin \theta \, dx \wedge dy \wedge dz = 2\pi \int_{\{x,y\leq 0\}} \text{Vol}(\mathcal{F}(\theta,\varphi)) \cdot \sin \theta d\theta \, d\varphi,
\]

which leads to

\[
(1') \quad p_{K, \mathcal{R}} = 1 - \frac{1}{4\pi \, \text{Vol}(F)} \int_{\{x,y\leq 0\}} \left(\int_{\{x,y\leq 0\}} \text{Vol}(\mathcal{F}(\theta,\varphi)) \cdot \sin \theta d\theta \right) d\varphi.
\]
The above reasoning is valid for all lattices \mathcal{R} provided K is small with respect to the lattice. Our purpose here is “only” to show that for four different types of lattices that we denote as $\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5},$ the volume of $\mathcal{F}(\theta, \varphi)$ can be expressed in terms of the well known support- and width-function (p and L) associated to the body K and to compute some of the integrals involved.

1. The lattice \mathcal{R}_{2}

The fundamental cell \mathcal{F}_{2} of the lattice \mathcal{R}_{2} is the parallelepiped spanned by the vectors a, b, c, where $c = (0,0,c)$ is perpendicular on $a = (a \sin \alpha, a \cos \alpha, 0)$ and $b = (0,b,0)$. We can assume without loss that the angle α between a and b belongs to $\left[0, \frac{\pi}{2}\right]$. One checks that K is small with respect to \mathcal{R}_{2} if and only if its diameter is less than $\min(a \sin \alpha, b \sin \alpha, c)$.

Recall that given $d = d(\theta, \varphi)$, $L(\theta, \varphi)$ denotes the length of the orthogonal projection of K onto the z-axis. In order to simplify the expression for $\text{Vol } F_{2}(\theta, \varphi)$ we use the functions θ_{1}, φ_{1} and θ_{2}, φ_{2} defined as follows:

$$
\theta_{1}(\theta, \varphi) := \arccos(\sin \theta \cos \varphi), \quad \varphi_{1}(\theta, \varphi) := \arctan\left(\frac{\cot \theta}{\sin \varphi}\right),
$$

$$
\theta_{2}(\theta, \varphi) := \arccos\left(\sin \theta \sin \left(\varphi + \alpha - \frac{\pi}{2}\right)\right), \quad \varphi_{2}(\theta, \varphi) := \arctan\left(\tan(\sin(\varphi + \alpha))\right).
$$

Thus, for $d = d(\theta, \varphi)$, the length of the orthogonal projection of K onto the x-axis is given by $L(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi))$ and also, the distance between the two planes that are parallel to the plane spanned by the vectors a and c and tangent to K equals $L(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi))$. This implies

$$
\text{Vol } F_{2}(\theta, \varphi) = \left(a \sin \alpha - L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)\right)\left(b - \frac{1}{\sin \alpha} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)\right)
$$

$$
\cdot \left(c - L(\theta, \varphi)\right)
$$

$$
= abc \sin \alpha - ab \sin \alpha \cdot \left(L(\theta, \varphi) - bc \cdot L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)\right)
$$

$$
- ca \cdot L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) + a \cdot L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \cdot L(\theta, \varphi)
$$

$$
+ b \cdot L(\theta, \varphi) \cdot L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) + \frac{c}{\sin \alpha} \cdot L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \cdot L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)
$$

$$
- \frac{1}{\sin \alpha} \cdot L(\theta, \varphi) \cdot L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \cdot L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right).
$$

From this we obtain

$$
\int_{0}^{2\pi} \int_{0}^{\pi} \text{Vol } F_{2}(\theta, \varphi) \sin \theta d\theta d\varphi = 4\pi abc \sin \alpha - ab \sin \alpha \int_{0}^{2\pi} \int_{0}^{\pi} L(\theta, \varphi) \sin \theta d\theta d\varphi
$$

$$
- bc \int_{0}^{2\pi} \int_{0}^{\pi} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \sin \theta d\theta d\varphi - ca \int_{0}^{2\pi} \int_{0}^{\pi} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d\theta d\varphi
$$
\[\begin{align*}
&+ a \int_0^{2\pi} \int_0^{2\pi} L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) L(\theta, \varphi) \sin \theta d\theta d\varphi \\
&+ \frac{c}{\sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi \\
&+ b \int_0^{2\pi} \int_0^{2\pi} L(\theta, \varphi) L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi \\
&- \frac{1}{\sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta, \varphi) L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi,
\end{align*}\]

and by (1')

\[
(52) \quad p_{K, R_2} = \frac{1}{4\pi a \sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) \sin \theta d\theta d\varphi \\
+ \frac{1}{4\pi b \sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi + \frac{1}{4\pi c} \int_0^{2\pi} \int_0^{2\pi} L(\theta, \varphi) \sin \theta d\theta d\varphi \\
- \frac{1}{4\pi b \sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) L(\theta, \varphi) \sin \theta d\theta d\varphi \\
- \frac{1}{4\pi ab \sin^2 \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi \\
- \frac{1}{4\pi c \sin \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta, \varphi) L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) \sin \theta d\theta d\varphi \\
+ \frac{1}{4\pi abc \sin^2 \alpha} \int_0^{2\pi} \int_0^{2\pi} L(\theta, \varphi) L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) \sin \theta d\theta d\varphi.
\]

Thus, we have proved:

Theorem 1. The probability \(p_{K, R_2}\) is given by the equality (52).

Remarks.
1) For \(\alpha = \frac{1}{2}\) one obtains (for the lattice \(R_1\)) the equality (1) in [7], since in this case the expression involved is symmetric in \(a, b\) and \(c\).
2) If \(K\) has constant width then the above result becomes

\[
\left(\frac{1}{a \sin \alpha} + \frac{1}{b \sin \alpha} + \frac{1}{c} \right) k - \left(\frac{1}{ab \sin^2 \alpha} + \frac{1}{bc \sin \alpha} + \frac{1}{ca \sin \alpha} \right) k^2 + \frac{1}{abc \sin^2 \alpha} k^3.
\]
In the case of sphere this expression is exactly the right-hand side of the formula (1.21) in
[3].

3) If \mathbf{K} is a needle of length $l < \min(a \sin \alpha, b \sin \alpha, c)$, we have $L(\theta, \varphi) = l|\cos \theta|$, which
implies $L(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi)) = l|\sin \theta \cos(\varphi + \alpha)|$ and $L(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi)) = l|\sin \theta \cos \varphi|$ and
the computations give the same result as in formula (1.13) in [3], i.e.,

$$p_{\mathbf{K, R}_2} = \frac{ab \sin \alpha + ac + bc}{2abc \sin \alpha} \cdot \frac{l - 2}{l^2} \cdot \frac{a + b + \left[1 + (\frac{\pi}{2} - \alpha)\cot \alpha\right]c}{3\pi abc \sin \alpha} \cdot l^2 + \frac{1 + (\frac{\pi}{2} - \alpha)\cot \alpha}{4\pi abc \sin \alpha} \cdot l^3.$$

2. The lattice \mathcal{R}_3

The fundamental cell \mathcal{F}_3 of the lattice \mathcal{R}_3 is the parallelepiped spanned by the vectors $\mathbf{a} = (a \sin \alpha, a \cos \alpha, 0)$, $\mathbf{b} = (0, b, 0)$ and \mathbf{c} (with $\|\mathbf{c}\| = c$). Let α, β and γ the angles between \mathbf{a} and \mathbf{b}, \mathbf{b} and \mathbf{c} and \mathbf{c} and \mathbf{a} respectively. We can assume without loss that all three angles
belong to the interval $\left[0, \frac{\pi}{2}\right]$. We denote also by E_1, E_2 and E_3 the planes spanned by \mathbf{b} and \mathbf{c}, \mathbf{c} and \mathbf{a} and \mathbf{a} and \mathbf{b} respectively. Of course, E_3 is the xy-plane. Further, if ξ_{ij} with
$0 < \xi_{ij} \leq \frac{\pi}{2}$ is the angle between E_i and E_j then $d_1 = a \sin \xi_{13} \sin \alpha = a \sin \xi_{12} \sin \gamma$, $d_2 = b \sin \xi_{12} \sin \beta = b \sin \xi_{23} \sin \gamma$ and $d_3 = c \sin \xi_{23} \sin \gamma = c \sin \xi_{13} \sin \beta$ are the heights of the
parallelepiped. Note that (α, β, γ) is uniquely determined by $\xi_{12}, \xi_{23}, \xi_{13}$ and viceversa. Thus, we can write \mathcal{R}_3 as a union of lattices of parallel equidistant planes denoted by \mathcal{E}_1^1, \mathcal{E}_2^2 and \mathcal{E}_3^3 such that the
distance between the planes of \mathcal{E}_i^j equals d_i. The normal vector to E_3 is $\mathbf{n}_3 = (0, 0, 1)$. As we did before, we denote by θ and φ the angles between \mathbf{d} and \mathbf{n}_3 and
between $(1, 0, 0)$ and the projection of \mathbf{d} on E_3.

Let \mathbf{c}' be the orthogonal projection of \mathbf{c} on the xz-plane and $\mathbf{c}_1 = \frac{1}{\|\mathbf{c}'\|}\mathbf{c}' = (\cos \xi_{13}, 0, \sin \xi_{13})$.

The vector $\mathbf{n}_1 = (\sin \xi_{13}, 0, -\cos \xi_{13})$ is orthogonal to E_1 and $(\mathbf{b}, \mathbf{c}_1, \mathbf{n}_1)$ is a (positively
oriented) triple of orthonormal vectors. Let θ_1 and φ_1 be the angles formed by \mathbf{d} and \mathbf{n}_1 and the
projection of \mathbf{d} on E_1 and \mathbf{b}. We have

$$\theta_1 = \theta_1(\theta, \varphi) = \arccos(\sin \xi_{13} \sin \theta \cos \varphi - \cos \xi_{13} \cos \theta),$$

$$\varphi_1 = \varphi_1(\theta, \varphi) = \arctan\left(\cos \xi_{13} \cot \varphi + \frac{\sin \xi_{13} \cot \theta}{\sin \varphi}\right).$$

$x \sin \xi_{23} \cos \alpha - y \sin \xi_{23} \sin \alpha + z \cos \xi_{23} = 0$ is an equation for the plane E_2. The corresponding
normal vector is $\mathbf{n}_2 = (\sin \xi_{23} \cos \alpha, -\sin \xi_{23} \sin \alpha, \cos \xi_{23})$. The vectors $\mathbf{c}_2 = (-\cos \xi_{23} \cos \alpha,
\cos \xi_{23} \sin \alpha, \sin \xi_{23})$, \mathbf{a} and \mathbf{n}_2 form a positively oriented triple of orthogonal vectors. If we
consider the angles θ_2 and φ_2 between \mathbf{d} and \mathbf{n}_2 and between the projection of \mathbf{d} on E_2 and \mathbf{c}_2 we have

$$\theta_2 = \theta_2(\theta, \varphi) = \arccos(-\sin \xi_{23} \sin \theta \cos(\varphi + \alpha) - \cos \xi_{23} \cos \theta),$$

$$\varphi_2 = \varphi_2(\theta, \varphi) = \arctan\left(\frac{\sin \theta \sin(\alpha + \varphi)}{\sin \xi_{23} \cos \theta - \sin \theta \cos \xi_{23} \cos(\alpha + \varphi)}\right).$$

The parallelepiped \mathcal{F}_3 has the volume

$$\text{Vol } \mathcal{F}_3 = ab \sin \alpha \cdot d_3 = abc \sin \alpha \sin \gamma \sin \xi_{23}$$

$$= \frac{d_1 d_2 d_3}{\sin \xi_{13}} = \frac{abc}{\sin \xi_{13} \sin \xi_{23} \sin \alpha}.$$
Now when K is small with respect to R_3, that is, when the diameter \(\sup L(\theta, \varphi) \) of K is smaller than \(\min(d_1, d_2, d_3) \), then $F_3(\theta, \varphi)$ is at its turn a parallelepiped whose faces and sides are parallel to the corresponding faces and sides of F_3 for all values $(\theta, \varphi) \in [0, \pi] \times [0, 2\pi]$. The heights of $F_3(\theta, \varphi)$ are given by

$$d_1(\theta, \varphi) = d_1 - L(\theta_1, \varphi_1), \quad d_2(\theta, \varphi) = d_2 - L(\theta_2, \varphi_2), \quad d_3(\theta, \varphi) = d_3 - L(\theta, \varphi).$$

Then $\text{Vol}_3(\theta, \varphi) = \frac{d_1(\theta, \varphi)d_2(\theta, \varphi)d_3(\theta, \varphi)}{\sin \xi_{13} \sin \xi_{23} \sin \alpha}$ and from (1') we get

$$p_{K,R_3} = 1 - \frac{1}{4\pi} \int_0^\pi \int_0^\pi \text{Vol}_3(\theta, \varphi) \sin \theta d\theta d\varphi$$

$$= 1 - \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \left[1 - \frac{L(\theta_1, \varphi_1)}{d_1} - \frac{L(\theta_2, \varphi_2)}{d_2} - \frac{L(\theta, \varphi)}{d_3} + \frac{L(\theta_1, \varphi_1)L(\theta_2, \varphi_2)}{d_1d_2} + \frac{L(\theta_1, \varphi_1)L(\theta_2, \varphi_2)}{d_1d_2} \right] \sin \theta d\theta d\varphi.$$

We have proved

Theorem 2. If K is small with respect to R_3, the probability p_{K,R_3} is given by

$$p_{K,R_3} = \frac{1}{4\pi} \left[\frac{1}{d_1} \int_0^\pi L(\theta_1, \varphi_1) \sin \theta d\theta d\varphi + \frac{1}{d_2} \int_0^\pi L(\theta_2, \varphi_2) \sin \theta d\theta d\varphi \right.$$}

$$+ \frac{1}{d_3} \int_0^\pi L(\theta, \varphi) \sin \theta d\theta d\varphi - \frac{1}{d_1d_2} \int_0^\pi \int_0^\pi L(\theta_1, \varphi_1)L(\theta_2, \varphi_2) \sin \theta d\theta d\varphi$$

$$- \frac{1}{d_2d_3} \int_0^\pi \int_0^\pi L(\theta_2, \varphi_2)L(\theta, \varphi) \sin \theta d\theta d\varphi - \frac{1}{d_3d_1} \int_0^\pi \int_0^\pi L(\theta, \varphi) L(\theta_1, \varphi_1) \sin \theta d\theta d\varphi$$

$$+ \frac{1}{d_1d_2d_3} \int_0^\pi \int_0^\pi L(\theta, \varphi)L(\theta_1, \varphi_1)L(\theta_2, \varphi_2) \sin \theta d\theta d\varphi \right].$$

Remarks. 1) The result is a generalization of Theorem 1 which is obtained for $\xi_{13} = \xi_{23} = \frac{\pi}{2}$, $\beta = \gamma = \frac{\pi}{2}$.

2) If K has constant width $k < \min (d_1, d_2, d_3)$ we obtain the special case

$$p_{K,R_3} = \left(\frac{1}{d_1} + \frac{1}{d_2} + \frac{1}{d_3} \right) k - \left(\frac{1}{d_1d_2} + \frac{1}{d_2d_3} + \frac{1}{d_3d_1} \right) k^2 + \frac{k^3}{d_1d_2d_3}.$$

3) For a needle of length $l < \min (d_1, d_2, d_3)$ one can find more detailed computations in [2].
3. The lattice \mathcal{R}_4

The fundamental cell F_4 of the lattice \mathcal{R}_4 is a right-angled prism whose base B_4 is a right-angled triangle with catheti a and b. If c is the height of the prism, then we can assume that the vertices of F_4 are $(0, 0, 0)$, $(a, 0, 0)$, $(0, b, 0)$, $(0, 0, c)$, $(a, 0, c)$ and $(0, b, c)$. We denote $\gamma := \arctan \frac{b}{a}$ and $h := \frac{ab}{\sqrt{a^2 + b^2}}$. The body K is small with respect to \mathcal{R}_4 if

$$\text{Diam}(K) < \min \left(\frac{3ab}{2(a + b + \sqrt{a^2 + b^2})} \right)$$

(see [6]). In this case the set $\mathcal{F}_4(\theta, \varphi)$ is also a right-angled prism with height $c - L(\theta, \varphi)$, and whose base $B_4(\theta, \varphi)$ is a right-angled triangle. We denote by p_1, p_2 and p_3 the lengths $p(\theta_1(\theta, \varphi), \varphi_1(\theta, \varphi))$, $p(\theta_2(\theta, \varphi), \varphi_2(\theta, \varphi))$ and $p(\theta_3(\theta, \varphi), \varphi_3(\theta, \varphi))$. Let $\theta_1, \varphi_1, \theta_2, \varphi_2, \theta_3$ and φ_3 be the functions defined by

$$\begin{align*}
\theta_1(\theta, \varphi) &:= \arccos(\sin \theta \cos \varphi), \quad \varphi_1(\theta, \varphi) := \arctan \left(\frac{\cot \theta}{\sin \varphi} \right), \\
\theta_2(\theta, \varphi) &:= \arccos(\sin \theta \sin \varphi), \quad \varphi_2(\theta, \varphi) := \arctan(\tan \theta \cos \varphi), \\
\theta_3(\theta, \varphi) &:= \arccos(-\sin \theta \sin(\varphi + \gamma)), \quad \varphi_3(\theta, \varphi) := \arccot(-\tan \theta \cos(\varphi + \gamma)).
\end{align*}$$

By a simple geometric argument (see e.g. [2]) is follows that

$$\frac{\text{Area } B_4(\theta, \varphi)}{\text{Area } B_4} = \left(1 - \frac{p_1}{a} - \frac{p_2}{b} - \frac{p_3}{h}\right)^2.$$
Using also the fact that $L(\theta, \varphi) = L$ we obtain

$$
\frac{\text{Vol } \mathcal{F}_4(\theta, \varphi)}{\text{Vol } \mathcal{F}_4} = \left(1 - \frac{p_1}{a} - \frac{p_2}{b} - \frac{p_3}{h}\right)^2 \left(1 - \frac{L}{c}\right).
$$

We now prove

Theorem 3. The probability p_{K, R_4} is given by

$$
(5.4) \quad p_{K, R_4} = \frac{1}{2\pi} \int_0^{2\pi} \int_0^\pi \left(\frac{p_1}{a} + \frac{p_2}{b} + \frac{p_3}{h} + \frac{L}{2c}\right) \sin \theta d\theta d\varphi
$$

$$
- \frac{1}{2\pi} \int_0^{2\pi} \int_0^\pi \left(\frac{p_1 p_2}{ab} + \frac{p_2 p_3}{bh} + \frac{p_3 p_1}{ha} + \frac{p_1 L}{ac} + \frac{p_2 L}{bc} + \frac{p_3 L}{hc}\right) \sin \theta d\theta d\varphi
$$

$$
- \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi \left(\frac{p_1^2}{a^2} + \frac{p_2^2}{b^2} + \frac{p_3^2}{h^2}\right) \sin \theta d\theta d\varphi
$$

$$
+ \frac{1}{2\pi} \int_0^{2\pi} \int_0^\pi \left(\frac{p_1 p_2 L}{abc} + \frac{p_2 p_3 L}{bhc} + \frac{p_3 p_1 L}{hac}\right) \sin \theta d\theta d\varphi
$$

$$
+ \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi \left(\frac{p_1^2 L}{a^2 c} + \frac{p_2^2 L}{b^2 c} + \frac{p_3^2 L}{h^2 c}\right) \sin \theta d\theta d\varphi.
$$

Proof. We have

$$
\left(1 - \frac{p_1}{a} - \frac{p_2}{b} - \frac{p_3}{h}\right)^2 \left(1 - \frac{L}{c}\right) = 1 - 2\left(\frac{p_1}{a} + \frac{p_2}{b} + \frac{p_3}{h} + \frac{L}{2c}\right)
$$

$$
+ 2\left(\frac{p_1 p_2}{ab} + \frac{p_2 p_3}{bh} + \frac{p_3 p_1}{ha} + \frac{p_1 L}{ac} + \frac{p_2 L}{bc} + \frac{p_3 L}{hc}\right) + \frac{p_1^2}{a^2} + \frac{p_2^2}{b^2} + \frac{p_3^2}{h^2}
$$

$$
- 2\left(\frac{p_1 p_2 L}{abc} + \frac{p_2 p_3 L}{bhc} + \frac{p_3 p_1 L}{hac}\right) - \left(\frac{p_1^2 L}{a^2 c} + \frac{p_2^2 L}{b^2 c} + \frac{p_3^2 L}{h^2 c}\right)
$$

and from (1') we obtain (5.4).

Remarks. 1) In the case when K is a needle of length $l < \min (h, c)$ one can deduce from (5.4), after some tedious calculations, the result of Theorem 1.3.3 in [3].

2) In the case when K is a sphere of radius $r < \min \left(\frac{c}{2}, \frac{ab}{a + b + \sqrt{a^2 + b^2}}\right)$, one obtains the probability

$$
2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{h} + \frac{1}{c}\right) r - 2\left(\frac{1}{ab} + \frac{1}{bh} + \frac{1}{ha}\right) r^2 - 4\left(\frac{1}{ac} + \frac{1}{bc} + \frac{1}{hc}\right) r^2
$$

$$
- \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{h^2}\right) r^2 + 4\left(\frac{1}{abc} + \frac{1}{bhc} + \frac{1}{hac}\right) r^3 + 2\left(\frac{1}{a^2 c} + \frac{1}{b^2 c} + \frac{1}{h^2 c}\right) r^3,
$$
which can be shown to be equivalent to the formula (1.23) in [3].

4. The lattice \mathcal{R}_5

The fundamental cell \mathcal{F}_5 of the lattice \mathcal{R}_5 is a right-angled prism whose base \mathcal{T}_5 is a right-angled trapezoid, as it is shown in the figure below.

The convex body K is small with respect to \mathcal{R}_5 if it satisfies the inequality $\text{Diam}(K) < \min(a - b \cot \gamma, b, c)$. In this case $\mathcal{F}_5(\theta, \varphi)$ is again a right-angled prism having the height $c - L(\theta, \varphi)$ (or in short form $c - L$) and the trapezoid $\mathcal{T}_5(\theta, \varphi)$ as a base. Using the notations from the previous section, we have again that the prism is completely determined by the distances p_1, p_2, p_3 and $p_2' = p(\pi - \theta_2, \varphi_2)$:
If we denote \(L := L(\theta, \varphi) \) and \(L_2 := p_2 + p'_2 \) we can write

\[
\text{Area } T_5(\theta, \varphi) = (b - p_2 - p'_2) \left(a - b \cot \gamma - p_1 - \frac{p_2 - p'_2}{2} \cot \gamma - \frac{p_3}{\sin \gamma} \right) = \\
\text{Area } T_5 - b \left(p_1 + \frac{p_3}{\sin \gamma} \right) + \frac{b}{2} (p_2 - p'_2) \cot \gamma - \left(a - \frac{b}{2} \cot \gamma \right) L_2 + \frac{1}{2} (p_2 - p'_2) \cot \gamma \\
+ L_2 \left(p_1 + \frac{p_3}{\sin \gamma} \right),
\]

\[
\text{Vol } F_5(\theta, \varphi) = (c - L) \text{ Area } T_5(\theta, \varphi) = \text{Vol } F_5 - bc \left(p_1 + \frac{p_3}{\sin \gamma} \right) \\
+ \frac{bc}{2} (p'_2 - p_2) \cot \gamma - \left(a - \frac{b}{2} \cot \gamma \right) c L_2 + \frac{c}{2} (p'_2 - p_2) \cot \gamma \\
- \left(a - \frac{b}{2} \cot \gamma \right) b L + b \left(p_1 + \frac{p_3}{\sin \gamma} \right) L - \frac{b}{2} (p'_2 - p_2) L \cot \gamma + c L_2 \left(p_1 + \frac{p_3}{\sin \gamma} \right) \\
+ \left(a - \frac{b}{2} \cot \gamma \right) L L_2 - \frac{1}{2} (p'_2 - p_2) L \cot \gamma - L L_2 \left(p_1 + \frac{p_3}{\sin \gamma} \right).
\]

Using now (1') and the equalities

\[
\int_{0}^{2\pi} \int_{0}^{\pi} p'_2 \sin \theta d\theta d\varphi = \int_{0}^{2\pi} \int_{0}^{\pi} p''_2 \sin \theta d\theta d\varphi, \quad i = 1, 2, \\
\int_{0}^{2\pi} \int_{0}^{\pi} p'_2 L \sin \theta d\theta d\varphi = \int_{0}^{2\pi} \int_{0}^{\pi} p''_2 L \sin \theta d\theta d\varphi, \quad i = 1, 2
\]

we obtain a proof of the following result.

Theorem 4. The probability \(p_{K, R_s} \) that a uniformly distributed convex body of revolution \(K \), which is small with respect to \(R_5 \), hits \(R_5 \) is

\[
(5) \quad p_{K, R_s} = \frac{1}{4\pi} \left[- \frac{1}{a - \frac{b}{2} \cot \gamma} \int_{0}^{2\pi} \int_{0}^{\pi} \left(p_1 + \frac{p_3}{\sin \gamma} \right) \sin \theta d\theta d\varphi + \frac{1}{b} \int_{0}^{2\pi} \int_{0}^{\pi} L_2 \sin \theta d\theta d\varphi \\
+ \frac{1}{c} \int_{0}^{2\pi} \int_{0}^{\pi} L \sin \theta d\theta d\varphi - \frac{1}{a - \frac{b}{2} \cot \gamma} c \int_{0}^{2\pi} \int_{0}^{\pi} \left(p_1 + \frac{p_3}{\sin \gamma} \right) L \sin \theta d\theta d\varphi \\
- \frac{1}{a - \frac{b}{2} \cot \gamma} b \int_{0}^{2\pi} \int_{0}^{\pi} L_2 \left(p_1 + \frac{p_3}{\sin \gamma} \right) \sin \theta d\theta d\varphi - \frac{1}{bc} \int_{0}^{2\pi} \int_{0}^{\pi} LL_2 \sin \theta d\theta d\varphi \\
+ \frac{1}{a - \frac{b}{2} \cot \gamma} bc \int_{0}^{2\pi} \int_{0}^{\pi} LL_2 \left(p_1 + \frac{p_3}{\sin \gamma} \right) \sin \theta d\theta d\varphi \right].
\]

Remarks. 1) In the case \(K \) is a sphere of radius \(r \), the conditions for \(K \) to be small with respect to \(R_5 \) can be weakened; the upper bound \(a - b \cot \gamma \) can be replaced by the larger number \(\frac{2a - b \cot \gamma}{1 + \tan \frac{\gamma}{2}} \), and the condition in the theorem becomes

\[
2r < \min \left(\frac{2}{1 + \tan \frac{\gamma}{2}}, b, c \right).
\]
From (5.5) we obtain
\[
P_{K,R_5} = \frac{1 + \frac{1}{a-b \cot \gamma}}{a - \frac{1}{2} b \cot \gamma} r + \frac{2 \pi}{b} + \frac{2 \pi}{c} - 2 \frac{1 + \frac{1}{a-b \cot \gamma}}{a - \frac{1}{2} b \cot \gamma} b r^2
- 2 \frac{1 + \frac{1}{a-b \cot \gamma}}{a - \frac{1}{2} b \cot \gamma} c r^2 - 4 \frac{r^2}{bc} + 4 \frac{1 + \frac{1}{a-b \cot \gamma}}{a - \frac{1}{2} b \cot \gamma} bc r^3.
\]

The same result follows from the formula (1.24) from [3] after some manipulations.

2) If K is a needle of length $l < \min (a - b \cot \gamma, b, c)$ then one can use (5.5) to deduce the formula (1.18) in [3], however some integrals are to be computed for this purpose.

References

Received November 26, 2000