The Gelfand-Kirillov Dimension of Rings with Hopf Algebra Action

Thomas Guédonon
152, boulevard du Général Jacques, 1050 Bruxelles, Belgique
e-mail: guedenon@caramail.com

Abstract. Let k be a perfect field, H a irreducible cocommutative Hopf k-algebra and $P(H)$ the space of primitive elements of H, R a k-algebra on which acts locally finitely H and $R\#H$ the associated smash product. Assume that H is almost solvable with $P(H)$ finite-dimensional n and the sequences of divided powers are all infinite. Then the Gelfand-Kirillov dimension of $R\#H$ is $GK(R) + n$.

1. Introduction

It is well known [7], that if δ is a derivation of an algebra R over a field k, then the Gelfand-Kirillov dimension of the polynomial algebra $R[\theta, \delta]$ is equal to $GK(R) + 1$, provided R is δ-locally-finite. More generally, if g is a finite-dimensional k-Lie algebra acting locally finitely on R, then the Gelfand-Kirillov dimension of the differential operator ring $R\#U(g)$ is $GK(R) + dim_k(g)$ where $U(g)$ is the enveloping algebra of g (see [5, Corollary 1.5]). The main objective of this note is to present a generalization of the above mentioned result to the case of a irreducible cocommutative Hopf algebra action. However, we assume that H is almost solvable. Note that $U(g)$ is a irreducible cocommutative Hopf algebra.

The Gelfand-Kirillov dimension of R (see [6] for the basic material), denoted $GK(R)$, is defined as follows (here V^l is the linear span of all products $v_1v_2\cdots v_l$ with $v_1, v_2, \ldots, v_l \in V$):

$$GK(R) = \sup\{\limsup_{n \to \infty} (\log_n dim_k V^n : V \text{ is a finite-dimensional subspace of } R)\}.$$

Throughout the paper, k is a field, H is a Hopf k-algebra with comultiplication Δ, counit ϵ and antipode s, and R is an H-module algebra (the action of $h \in H$ shall be denoted by $h.r$), i.e.
This paper accomplishes the following: Let \(k \) be a field, \(H \) be an \(H \)-module such that the multiplication in \(R \) is an \(H \)-module map, i.e., \(h(ab) = \sum (h_i) (h_1, a)(h_2, b) \) for all \(h \in H \) and \(a, b \in R \). We denote by \(R\#H \) the associated smash product. Both \(R \) and \(H \) are naturally embedded in \(R\#H \). The multiplication in \(R\#H \) is defined by the rule \((a\#h)(b\#g) = \sum (h_i) a(h_1, b) \# h_2 g \). For further information on Hopf algebras and the ring \(R\#H \), the reader is referred to [1, 8 and 10]. We denote by \(P(H) \) the space of primitive elements of \(H \). We say that \(H \) is cocommutative if \(\Delta = \tau \circ \Delta \) where \(\tau \) is the usual twist map \(\tau(a \otimes b) = b \otimes a \). By [8, Corollary 1.5,12], the antipode of a cocommutative Hopf algebra is involutive. We say that \(H \) is irreducible if any two nonzero subcoalgebras of \(H \) have nonzero intersection.

If \(H \) is irreducible cocommutative, then so is any subHopfalgebra of \(H \); if the characteristic of \(k \) is 0, then \(H \) is the enveloping algebra of \(P(H) \).

Let \(X \) be an element of \(P(H) \). A sequence of divided powers over \(X \) of maximum length \(l \) possibly infinite is a sequence \(X^{(0)} = 1, X^{(1)} = X, \ldots, X^{(l)} \) such that \(X^{(i)} X^{(j)} = \left(\begin{array}{c} i + j \\ i \end{array} \right) X^{(i+j)} \) and \(\Delta(X^{(j)}) = \sum j=0 \ X^{(j')} \otimes X^{j-j'} \) for each \(i, j \leq l \). It follows routinely from the counitary property that \(\epsilon(X^{(l)}) = 0 \) for \(l > 0 \). If \(k \) has characteristic 0, then \(X^{(n)} = X^n / n! \).

If \(k \) is perfect and if \(H \) is irreducible with \(P(H) \) finite-dimensional \(n \), then by [11, Theorems 2, 3] and [12], \(H \) has a basis consisting of ordered monomials \(X_1^{(i_1)} X_2^{(i_2)} \cdots X_n^{(i_n)} ; i_j \in \mathbb{N} \); where \((X_1, X_2, \ldots, X_n) \) is a basis for \(P(H) \).

Examples 1.1. (1) Let \(k \) be of characteristic 0, \(g \) a finite-dimensional \(k \)-Lie algebra of dimension \(n \) and \(H = U(g) \). Then \(H \) is an irreducible cocommutative Hopf algebra and \(P(H) = g \). Furthermore \(H \) has a basis consisting of ordered monomials \(X_1^{(i_1)} X_2^{(i_2)} \cdots X_n^{(i_n)} ; i_j \in \mathbb{N} \) as above and the sequences of divided powers are all infinite.

(2) Let \(k \) be perfect, \(G \) an affine algebraic group over \(k \) of dimension \(n \) and \(H = \text{hyp}(G) \) the hyperalgebra of \(G \). Then \(H \) is an irreducible cocommutative Hopf algebra and \(P(H) \) is the Lie algebra of \(G \). Furthermore \(H \) has a basis consisting of ordered monomials \(X_1^{(i_1)} X_2^{(i_2)} \cdots X_n^{(i_n)} ; i_j \in \mathbb{N} \) as above and the sequences of divided powers are all infinite.

This paper accomplishes the following: Let \(k \) be perfect, \(H \) irreducible cocommutative with \(P(H) \) finite-dimensional \(n \) and \(R H \)-locally finite. If the sequences of divided powers are all infinite and if \(H \) is almost solvable, then \(GK(R\#H) = GK(R) + n \).

2. The main result

We consider \(H \) as a left \(H \)-module by the left adjoint action, that is \(h.h' = \sum (h_i) h_1 h's(h_2) \). We say that a subHopfalgebra \(N \) of \(H \) is normal in \(H \) if \(h.n \in N \) for all \(h \in H, n \in N \). Let \(N \) be a normal subHopfalgebra of \(H \). There is a natural action of \(H \) on \(R\#N \) defined by \(h.(rn) = \sum (h_i) (h_1, r)(h_2, n) \).

The bracket product in \(H \) is defined by \([x, y] = \sum x_1 y_1 s(x_2) s(y_2) \) for \(x, y \in H \).
If \(I, J \) are subHopf algebras of \(H \), \([I, J]\) denotes the subalgebra of \(H \) generated by the elements \([x, y]\) with \(x \in I \) and \(y \in J \); if \(H \) is cocommutative, this is a subbialgebra of \(H \).

We will say that \(I \) is central in \(H \) if \([H, I] = k \). Clearly, \(I \) is central in \(H \) if and only if \([x, y] = \epsilon(x)\epsilon(y) \) for all \(x \in H \) and \(y \in I \). If \(I \) is central in \(H \), then \(I \) is normal in \(H \).

Let \(G \) be a connected abelian algebraic group, then \(G \) is central in \(G \); so by [14, Corollary 3.4.15], \(\text{hyp}(G) \) is central in \(\text{hyp}(G) \); i.e., \(\text{hyp}(G) \) is a commutative Hopf algebra.

An ideal \(I \) of \(R \) is \(H \)-invariant if \(h.I \subseteq I \) for all \(h \in H \). Any ideal of \(R\#H \) is \(H \)-invariant.

We say that \(R \) is \(H \)-simple, if the only \(H \)-invariant ideals of \(R \) are \((0) \) and \(R \).

A proper \(H \)-invariant ideal \(Q \) of \(R \) is \(H \)-prime if, whenever \(I \) and \(J \) are \(H \)-invariant ideals of \(R \) with \(IJ \subseteq Q \) then either \(I \subseteq Q \) or \(J \subseteq Q \).

Any \(H \)-invariant prime ideal of \(R \) is \(H \)-prime. Let \(I \subseteq Q \) be \(H \)-invariant ideals of \(R \). If \(Q \) is \(H \)-prime, then \(Q/I \) is an \(H \)-prime ideal of \(R/I \). We say that the ring \(R \) is \(H \)-prime if the ideal \((0) \) is \(H \)-prime.

If \(Q \) is an \(H \)-prime ideal of \(R \), then \(R/Q \) is an \(H \)-prime ring. Any \(H \)-simple ring is \(H \)-prime. The \(H \)-invariant prime ideals of \(R\#H \) are precisely its \(H \)-prime ideals. If \(P \) is a prime ideal of \(R\#H \) then \(P \cap R \) is an \(H \)-prime ideal of \(R \) (see [4, Lemma 1.2]).

We say that \(R \) is \(H \)-locally finite if every element of \(R \) is contained in a finite-dimensional \(H \)-stable subspace of \(R \). If \(H \) acts trivially on \(R \) then \(R \) is \(H \)-locally finite; in particular, if \(H \) is commutative, \(H \) is \(H \)-locally finite. If \(R \) and \(H \) are \(H \)-locally finite, then \(R\#H \) is \(H \)-locally finite. By [13, page 259], if \(p > 0 \) and if \(H \) is irreducible cocommutative with \(P(H) \) finite-dimensional, then \(H \) is the union of its finite-dimensional normal subHopf algebras; so \(H \) is \(H \)-locally finite; hence any normal subHopf algebra of \(H \) is \(H \)-locally finite. Clearly, \(R \) is \(g \)-locally finite as in [5, section 1] if and only if \(R \) is \(U(g) \)-locally finite.

Lemma 2.1. Let \(G \) be a connected algebraic group acting rationally on \(R \) and \(H = \text{hyp}(G) \) the hyperalgebra of \(G \). Then \(R \) is \(H \)-locally finite.

Proof. Let \(a \in R \). Since \(R \) is a rational \(G \)-module, there exists a finite dimensional \(G \)-stable subspace \(V \) of \(R \) such that \(a \in V \). By [14, Corollary 3.4.17], \(V \) is also \(H \)-stable. \(\square \)

From now on \(k \) is perfect and \(H \) is irreducible cocommutative with \(P(H) \) finite-dimensional \(n \). So \(H \) has a basis consisting of ordered monomials \(X_1^{(i_1)}X_2^{(i_2)}\cdots X_n^{(i_n)} \); \(i_j \in \mathbb{N} \); where \((X_1, X_2, \ldots X_n) \) is a basis for \(P(H) \). This basis will be fixed in the remainder of the paper.

We will say that \(H \) is almost solvable if there exists a chain of subHopf algebras

\[k = H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots \subseteq H_n = H \]

of \(H \) such that for each \(i \leq n \), \(H_{i-1} \) is normal in \(H_i \) and the monomials \(X_1^{(j_1)}X_2^{(j_2)}\cdots X_i^{(j_i)} \); \(j_i \in \mathbb{N} \) form a basis for \(H_i \).

Thus \(H \) commutative implies \(H \) almost solvable; in particular, if \(\text{dim}_k(P(H)) = 1 \), then \(H \) is almost solvable. Let \(g \) be as in Examples 0.1 (1), then \(U(g) \) is almost solvable if \(g \) is solvable in the usual sense. Let \(G \) be a connected affine algebraic group, then \(\text{hyp}(G) \) is almost solvable.

Lemma 2.2. Let \(G \) be a connected affine algebraic group and \(H = \text{hyp}(G) \). If \(G \) is unipotent then \(H \) is almost solvable.
Proof. It is well known that G has a composition series

$$1 = G_0 \subset G_1 \cdots \subset G_{n-1} \subset G_n = G$$

where each G_i is normal in G and each G_i/G_{i-1} is isomorphic to G_a, the one-dimensional additive group. Set $H_i = hyp(G_i)$, then $H_0 = k$ and $H_n = H$. By [14, Corollary 3.4.15], each H_i is a normal subHopf algebra of H. Since $P(H)$ is nilpotent, there exists an element $X_i \in P(H_i) - P(H_{i-1})$ such that $(X_1, X_2, \ldots, X_{i-1}, X_i)$ is a basis for $P(H_i)$. By [11, Theorems 2, 3] and [12], the monomials $X_1^{(j_1)}X_2^{(j_2)} \cdots X_i^{(j_i)}; \ j_i \in \mathbb{N}$ form a basis for H_i, where the $X_i^{(j_i)}$ are infinite sequences of divided powers over X_i. □

We are now ready to prove the main result of the paper.

Theorem 2.3. Let k be a perfect field, H a irreducible cocommutative almost solvable Hopf algebra with $P(H)$ finite-dimensional n and R an H-locally finite H-module algebra. Assume that the sequences of divided powers are all infinite. Then

$$GK(R\#H) = GK(R) + n.$$

Proof. Suppose that $n = 1$ and set $g = P(H)$. So H has a basis consisting of ordered monomials $X^{(i)}$, where X is a k-basis of g. Note that R is g-locally finite. By [7], $GK(R\#U(g)) = GK(R) + 1$. So $GK(R\#H) \geq GK(R) + 1$, since $R\#U(g)$ is a subalgebra of $R\#H$. For the reverse inequality, let V be a finite-dimensional subspace of $R\#H$. Using the fact that R is H-locally finite, we see that

$$V \subseteq W + WX^{(1)} + WX^{(2)} + \cdots + WX^{(m)}$$

for some m and some finite-dimensional H-invariant subspace W of R. It is not difficult to show that

$$V^n \subseteq W^n + W^nX + W^nX^2 + \cdots + W^nX^n + W^nX^{(2)} + W^nX^{(3)} + \cdots + W^nX^{(m)}.$$

So $dim_k V^n \leq (n + nm)(dim_k W^n)$ and we get

$$log_n(dim_k V^n) \leq log_n(dim_k W^n) + log_n(n + nm) = log_n(dim_k W^n) + 1 + log_n(1 + m).$$

This yields the reverse inequality $GK(R\#H) \leq GK(R) + 1$.

For the general case, let

$$k = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_n = H$$

be a chain of subHopf algebras of H such that for each $i \leq n$, H_{i-1} is normal in H_i and the monomials $X_1^{(j_1)}X_2^{(j_2)} \cdots X_i^{(j_i)}; \ j_i \in \mathbb{N}$ form a basis for H_i. Set $R_i = R\#H_i$; so $R_0 = R$ and $R_n = R\#H$. Clearly, $R_{i+1} = R_i\#(k < X_{i+1} >)$ for each $i \leq n - 1$, where $k < X_{i+1} >$ is the divided power Hopf algebra spanned by the monomials $X_i^{(j_i)}$, this is a subHopf algebra of H_{i+1}. Now each R_i is $k < X_{i+1} >$-locally finite, since each R_i is H_{i+1}-locally finite. On the other hand, the space of primitive elements of $k < X_{i+1} >$ is the k-vector subspace kX_{i+1} of H_{i+1}. By the previous paragraph, $GK(R_{i+1}) = GK(R_i) + 1$ and the result follows. □
Theorem 1.3 may be applied in the following circumstances:
- k is of characteristic 0, g is a finite-dimensional solvable k-Lie algebra, H is the enveloping algebra of g and R is a g-locally finite $U(g)$-module algebra.
- k is perfect, G is a connected unipotent affine algebraic group acting rationally on R and H is the hyperalgebra of G.
- k is perfect, G is a connected abelian affine algebraic group acting rationally on R and H is the hyperalgebra of G.
- k is perfect, H is a divided powers Hopf algebra (with $dim P(H) = 1$) acting on R such that R is an H-locally finite H-module algebra.

As an application of Theorem 1.3 we shall show some results concerning incomparability and prime length. In the remainder of this section, R will be noetherian of infinite Gelfand-Kirillov dimension and all the smash products are noetherian. We denote by dim the classical Krull dimension and by $H-dim$ its H-invariant version; i.e. the maximal length of a chain of H-prime ideals of R. We have $H-dim (R#H) = dim(R#H)$. If R is H-locally finite, the H-prime ideals of R are prime [2, Proposition 1.3]; so $H-dim (R) \leq dim(R)$.

Corollary 2.4. Let k be a perfect field, H a irreducible cocommutative almost solvable Hopf algebra with $P(H)$ finite-dimensional, R an H-locally finite H-module algebra and $A = R#H$. Assume that the sequences of divided powers are all infinite. Let P be a prime ideal of A such that $P \cap R = 0$. Then $ht(P) \leq n$. If R is H-simple, then $dim(A) \leq n$.

Proof. Since $R = R/(P \cap R)$ is a subalgebra of A/P, we have $ GK(R) \leq GK(A/P)$. Theorem 1.3 implies that $ GK(A) - GK(A/P) \leq n$. By [6, Proposition 3.16], $ht(P) \leq n$. If R is H-simple, $ht(Q) \leq n$ for any prime ideal Q of A. \□

The next result bounds $dim(R#H)$ in terms of $H-dim(R)$. Although, the bound is surely not sharp.

Proposition 2.5. Let k be a perfect field, H a irreducible cocommutative almost solvable Hopf algebra with $P(H)$ finite-dimensional, R an H-locally finite H-module algebra and $A = R#H$. Assume that the sequences of divided powers are all infinite. Suppose that $P_0 \subset P_1 \subset \cdots \subset P_{n+1}$ is a strictly increasing chain of prime ideals of A, then $P_0 \cap R \subset P_{n+1} \cap R$ and $dim(A) \leq (n+1)(H-dim(R) + 1)$.

Proof. Suppose that $P_0 \cap R = P_{n+1} \cap R = I$. By [4, Lemma 1.2], I is an H-prime ideal of R and $IA = AI$ is an ideal of A. By [2, Proposition 1.3], I is a prime ideal of R. One can show that $A/IA \simeq (R/I)#H$. Set $\bar{R} = R/I$ and $\bar{A} = A/IA$. In \bar{A}, we have a strictly increasing chain of prime ideals $\overline{P}_0 \subset \overline{P}_1 \subset \cdots \subset \overline{P}_{n+1}$ of length $n + 1$ such that $\overline{P}_0 \cap \bar{R} = \overline{P}_{n+1} \cap \bar{R} = \bar{I} = 0$; where \overline{P}_i's denote the natural images of P_i's in \bar{A}. It follows that $ht(\overline{P}_{n+1}) \geq n + 1$. By Corollary 1.4, $ht(\overline{P}_{n+1}) \leq n$ and we get a contradiction.

Let $P_0 \subset P_1 \subset \cdots \subset P_s$ be a strictly increasing chain of prime ideals of A. By the preceding paragraph,

$$P_0 \cap R \subset P_{n+1} \cap R \subset P_{2(n+1)} \cap R \subset P_{3(n+1)} \cap R \subset \cdots$$

is a strictly increasing chain of H-invariant prime ideals of R. Since this chain can contain at most $(1+H-dim(R))$ H-invariant prime ideals, we conclude that $s \leq (n+1)(H-dim(R) + 1)$. \□
Proposition 1.5 may be applied to the smash product $R\#U(g)$, where k is of characteristic 0, R is noetherian of finite Gelfand-Kirillov dimension and g is a finite dimensional solvable k-Lie algebra. For related work, see [3] and [9, Corollary 4.4].

References

Received February 1, 2001