An Invariance Property of the Tridens Curve in the Isotropic Plane

Jürgen Tölke

Fachbereich Mathematik, Universität Siegen
Walter-Flex-Straße 3, D-57068 Siegen, Germany

Abstract. The tridens curves of third order and their generalizations in the isotropic plane over \(\mathbb{R} \) were studied by D. Palman [1] and H. Sachs [2,3]. For additional properties see [6,7]. In this paper we prove that for every such tridens curve \(T \) of third order there exists an inscribed triangle \(\Delta \) with the property: \(T \) remains invariant under the correspondence of opposite angle points of \(\Delta \).

MSC 2000: 51N25
Keywords: isotropic plane, tridens curve of third order, opposite angle points

1. The equation of every irreducible tridens curve \(T \) of third order in the isotropic plane \(I_2(\mathbb{R}) \) can be written in the form (see [6, Lemma, part (a)])

\[
T(x, y) \equiv \frac{1}{R} \{y(x - a) - Rx(x - a)(x - A)\}, \quad \text{with } a, a, A, R \in \mathbb{R}
\]

and

\[
\alpha a A(\alpha - a)(\alpha - A)(a - A) \neq 0 \quad \text{and} \quad (2\alpha - a)(2\alpha - A)(2\alpha - a - A) \neq 0.
\]

In the above selected affine \(x, y \)-coordinate system the absolute point of \(I_2(\mathbb{R}) \) is supposed to have the homogeneous coordinates \(0 : 0 : 1 \). Using the definitions

\[
2\lambda R(2\alpha - a - A) = 1 \quad \text{and} \quad \lambda b := 2\alpha - A
\]

of numbers \(\lambda \) and \(b \) we get instead of (1) with (2)

\[
T(x, y) \equiv [x(x - a) - \lambda(\lambda b - a)y](a - x) + \lambda(\lambda b - a)(x - \lambda b)y = 0
\]

0138-4821/93 $ 2.50 © 2003 Heldermann Verlag
with

\[(A + \lambda b)aA(A + \lambda b - 2a)(\lambda b - A)(a - A) \neq 0 \quad \text{and} \quad (A + \lambda b - a)\lambda b(\lambda b - a) \neq 0.\]

Hence the triangle \(\Delta\) with the vertices

\[(A_1 := (0, 0), \ A_2 := (a, 0), \ A_3 := (\lambda b, b)\]

is an \textit{inscribed triangle} of the tridens curve \(T\) with the equation (4) with (5).

2. The correspondence of opposite angle points for an admissible triangle \(\Delta = \Delta(A_1A_2A_3)\) (see [4, p.22]) of \(I_2(\mathbb{R})\) is explained as follows. Let us denote with \(\sigma_i\) the line determined by the side of \(\Delta\) which does not contain the vertex \(A_i\) and with \(\omega_i\) the isotropic bisectrix of the straight lines \(\sigma_{i+1}\) and \(\sigma_{i+2}\) (in this order). For a point \(P(x, y)\) we regard the line \(P \lor A_i\) and its image line \(r_i\) under reflection at \(\omega_i\) in the sense of the isotropic metric. The lines \(r_1, r_2, r_3\) have a common point \(P^* (x^*, y^*)\), the so called \textit{opposite angle point} of \(P(x, y)\) with respect to \(\Delta\). Basic properties of this involutory, quadratic correspondence were studied by K. Strubecker (see [4, p.528f]).

Referring us to the triangle \(\Delta\) with the vertices (6) we have for the coordinates of the opposite angle points \(P\) and \(P^*\) the analytical expressions (see [5, p.158])

\[x = \lambda x^* \frac{\sigma_1(x^*, y^*)}{\kappa(x^*, y^*)}, \quad y = (x^* - \lambda y^*) \frac{\sigma_1(x^*, y^*)}{\kappa(x^*, y^*)}.\]

Hereby we have

\[\kappa(x, y) \equiv x(x - a) - \lambda(\lambda b - a)y = 0\]

as the isotropic circumcircle of \(\Delta\) and

\[\sigma_1(x, y) \equiv b(x - a) - (\lambda b - a)y = 0\]

as the line determined by that side of \(\Delta\) which is opposite to the vertex \(A_1\). Using (7), a simple calculation leads to

\[\kappa(x^*, y^*)T(x, y) = \kappa(x, y)T(x^*, y^*).\]

\textbf{Theorem.} For every irreducible tridens curve \(T\) of third order in the isotropic plane over \(\mathbb{R}\) exists an inscribed triangle \(\Delta\) with the property: \(T\) remains invariant under the correspondence of opposite angle points with respect to \(\Delta\).
Acknowledgements. Many thanks to my dear friend Dr. W. Schürrer for preparing the figure.

References

Zbl 0722.51013

Zbl 0625.51001

Zbl 0619.51012

Zbl 0552.51016

Zbl 0842.51016

Zbl 0906.51011

Zbl 0963.51012

Received January 16, 2001