Generalized Adjoint Semigroups of a Ring

Xiankun Du Junlin Wang

Department of Mathematics, Jilin University
Changchun 130012, China
e-mail: duxk@jlu.edu.cn

Abstract. In this paper, we introduce generalized adjoint semigroups (GA-semigroups) of a ring R. We construct generalized adjoint semigroups on a ring R by means of bitranslations of R. It is shown that GA-semigroups of a π-regular ring are π-regular. As an application we deduce that in any ring, idempotents can be lifted modulo π-regular ideals. GA-semigroups containing idempotents are described in terms of the ring of a Morita context.

1. Introduction

Let R be a ring not necessarily with identity. The composition defined by $a \circ b = a + b + ab$ for any $a, b \in R$ is usually called the circle or adjoint multiplication of R, which plays a role in the theory of Jacobson radical. It is well-known that (R, \circ) is a monoid with identity 0, called the circle or adjoint semigroup of R. There are many interesting connections between a ring and its adjoint semigroup, which were studied in several papers, for example, [8, 13, 14, 16, 22, 23, 24, 30, 31]. Typical results are to describe the adjoint semigroup of a given ring and the ring with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distributive laws:

$$a \circ (b + c - d) = a \circ b + a \circ c - a \circ d,$$

$$b + c - d \circ a = b \circ a + c \circ a - d \circ a,$$

References

0138-4821/93 $ 2.50 © 2006 Heldermann Verlag
or equivalently,

\[a \circ (b + c) = a \circ b + a \circ c - a \circ 0, \]
\[(b + c) \circ a = b \circ a + c \circ a - 0 \circ a, \]

which was observed in [1]. Thus as generalizations of the circle multiplication of a ring, a binary operation \(\circ \) (associative or nonassociative) on an Abelian group \(A \) satisfying the generalized distributive laws have been studied by several authors making use of different terminologies, for example, pseudo-ring in [33], weak rings in [10], quasirings in [11], prerings in [3, 4, 29]. In particular, the so-called \((m,n)\)-distributive rings studied in [5, 26, 27, 36] also satisfy the generalized distributive laws (1) and (2). To such a system \((A, +, \circ)\) there corresponds a unique associated ordinary ring. But, in general, even if \(A \) is a ring, there may exist no relation between the ring \(A \) and the associated ring of \((A, +, \circ)\). In this paper, we are interested in a binary operation \(\circ \) on a ring \(R \), satisfying the associative law, the generalized distributive laws as (1) and (2), and the compatibility:

\[xy = x \circ y - x \circ 0 - 0 \circ y + 0 \circ 0. \]

This is equivalent to say that \((R, +, \circ)\) is a weak ring such that the ring \(R \) is exactly the associated ring of \((R, +, \circ)\). Such a binary operation \(\circ \) is called a generalized adjoint multiplication on \(R \) and the semigroup \((R, \circ)\) is called a generalized adjoint semigroup of \(R \), abbreviated GA-semigroup, which is a generalization of the multiplicative semigroup and the adjoint semigroup of a ring \(R \). Essentially, the multiplicative and adjoint semigroup of \(R \) are exactly generalized adjoint semigroups of \(R \) with zero and identity, respectively (cf. Theorem 2.14). The other generalization of adjoint multiplication was studied in [21].

The aim of this paper is to describe generalized adjoint semigroups of a ring \(R \). In Section 2, we present a way to construct generalized adjoint multiplications on a ring \(R \) by means of bitranslations of \(R \), characterize a GA-semigroup with identity or zero and describe GA-semigroups of a ring with 1.

In Section 3, we prove that GA-semigroups of a \(\pi \)-regular ring are \(\pi \)-regular.

In Section 4, we first prove that a GA-semigroup containing idempotents can be represented as a GA-semigroup of the ring of a Morita context. Then we present a sufficient condition and a necessary condition for a GA-semigroup to contain idempotents, in virtue of which we prove that in any ring, idempotents can be lifted modulo a \(\pi \)-regular ideal. This generalizes a classical result in ring theory which states that idempotents modulo a nil ideal can be lifted ([28]) and the ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which extends the well-known Lallement’ lemma to eventually regular semigroups (i.e., \(\pi \)-regular semigroups). Finally, we prove that GA-semigroups of rings with DCC on principal right ideals contain idempotents.

In the forthcoming paper [17], we characterize the rings with a GA-semigroup having a property \(P \) and its such GA-semigroups, where \(P \) stands for orthodox, right inverse, inverse, pseudoinverse, \(E \)-unitary, and completely simple, respectively.
Although a ring R in this paper needs not contain identity, it is convenient to use a formal identity 1, which can be regarded as the identity of a unitary ring containing R, since R can be always embedded into a ring with identity 1; for example, we can write $a \circ b = (1 + a)(1 + b) - 1$ for any $a, b \in R$ and write $x^0 = 1$ for any $x \in R$ by making use of a formal 1.

For $x \in R$ and a positive integer n we denote by $x^{[n]}$ the n-th power of x with respect to a generalized adjoint multiplication \circ, and $x^{[0]}$ stands for an empty word.

A radical ring means a Jacobson radical ring.

For the algebraic theory and terminology on semigroups we will refer to [9, 20, 25].

2. A construction of GA-semigroups

Definition 2.1. Let R be a ring. A binary operation \circ on R is called a generalized adjoint multiplication on R, if it satisfies the following conditions:

(i) the associative law: $x \circ (y \circ z) = (x \circ y) \circ z$;

(ii) the generalized distributive laws:

\[
\begin{align*}
 x \circ (y + z) &= x \circ y + x \circ z - x \circ 0, \\
 (y + z) \circ x &= y \circ x + z \circ x - 0 \circ x;
\end{align*}
\]

(iii) the compatibility: $xy = x \circ y - x \circ 0 - 0 \circ y + 0 \circ 0$.

The semigroup (R, \circ) is called a generalized adjoint semigroup of R, abbreviated GA-semigroup and denoted by R°.

We now remark that for a binary operation \circ on R, the generalized distributive laws are equivalent to

\[
\begin{align*}
 w \circ (x + y - z) &= w \circ x + w \circ y - w \circ z, \\
 (x + y - z) \circ w &= x \circ w + y \circ w - z \circ w.
\end{align*}
\]

Example 2.2. The multiplicative semigroup R^* of a ring R is a GA-semigroup of R with zero 0. The adjoint semigroup R° of R is a GA-semigroup of R with identity 0.

Lemma 2.3. For any $x_i, y_j \in R$, and $p_i, q_j \in \mathbb{Z}$ with $\sum p_i = \sum q_j = 0$, we have

\[
\left(\sum p_i x_i \right) \left(\sum q_j y_j \right) = \sum p_i q_j (x_i \circ y_j).
\]
Proof. Set \(p = \sum p_i \) and \(q = \sum q_j \). Then we have that
\[
\left(\sum p_i x_i \right) \left(\sum q_j y_j \right) \\
= \sum p_i q_j (x_i y_j) \\
= \sum p_i q_j (x_i \circ y_j) - \sum p_i q_j (x_i \circ 0) \\
- \sum p_i q_j (0 \circ y_j) + \sum p_i q_j (0 \circ 0) \quad \text{(by the compatibility)} \\
= \sum p_i q_j (x_i \circ y_j) - q \sum p_i (x_i \circ 0) - p \sum q_j (0 \circ y_j) + pq(0 \circ 0) \\
= \sum p_i q_j (x_i \circ y_j),
\]
as desired. \(\square \)

Corollary 2.4. If \(x \circ y = y \circ x \), then \((x - y)^n = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} x[i] \circ y[n-i] \).

Proof. As the usual binomial theorem, the corollary can be proved by use of an induction on \(n \) and Lemma 2.3. \(\square \)

Recall that a bitranslation is a pair \((\lambda, \rho) \in \text{End}(R_R) \times \text{End}(R_R)\) such that \(x\lambda(y) = \rho(x)y \) for any \(x, y \in R \). The set \(\Omega(R) \) of all bitranslations of \(R \) is a subring of \(\text{End}(R_R) \times \text{End}(R_R) \) with identity \((1_R, 1_R)\), called the translational hull of \(R \). For \(a \in R \), let \(\lambda_a \) and \(\rho_a \) be the left and right multiplications by \(a \), respectively. Then \((\lambda_a, \rho_a)\) is a bitranslation of \(R \), denoted by \(\pi_a \), and \(\pi : a \mapsto \pi_a \) defines a ring homomorphism form \(R \) into \(\Omega(R) \) such that the image \(\pi(R) \) is an ideal of \(\Omega(R) \) and the kernel is \(\text{Ann}(R) = \{ x \in R | xR = Rx = 0 \} \). Hence we can identify \(a \in R \) with \(\pi_a \) and \(R \) with \(\pi(R) \) whenever \(\text{Ann}(R) = 0 \). A bitranslation \(\theta = (\lambda, \rho) \) will be considered as a double operator on \(R \) defined by \(\theta x = \lambda(x) \) and \(x\theta = \rho(x) \) for any \(x \in R \). Then \(\theta = \theta' \) if and only if \(\theta x = \theta' x \) and \(x\theta = x\theta' \) for any \(x \in R \). A bitranslation \(\theta \) is called self-permutable if \((\theta x)\theta = \theta(x\theta) \) for any \(x \in R \) ([32, 34, 35]).

For a self-permutable bitranslation \(\theta \), there is no ambiguity if we write \(\theta xy\theta^2 z \), for example.

By an associated pair of \(R \) we mean a pair \((\theta, \vartheta) \in \Omega(R) \times R\) satisfying the following conditions:

\((i) \) \(\theta \vartheta = \vartheta \theta \);

\((ii) \) \(\theta \) is self-permutable;

\((iii) \) \(\theta^2 = \theta + \pi_{\vartheta} \).

Theorem 2.5. Let \((\theta, \vartheta)\) be an associated pair of a ring \(R \) and define
\[
x \circ y = xy + x\theta + \theta y + \vartheta
\]
for any \(x, y \in R \). Then \(\circ \) is a generalized adjoint multiplication on \(R \) (called one induced by \((\theta, \vartheta)) \). Conversely, every generalized adjoint multiplication \(\circ \) on \(R \) can be obtained in this fashion by setting \(\vartheta = 0 \circ 0 \), \(\theta x = 0 \circ x - 0 \circ 0 \) and \(x\theta = x \circ 0 - 0 \circ 0 \). Moreover, the correspondence \((\theta, \vartheta) \mapsto \circ \) is a 1-1 correspondence between the associated pairs of \(R \) and generalized adjoint multiplications on \(R \).
Proof. Suppose that \((\theta, \vartheta)\) is an associated pair of \(R\) and the operation \(\diamond\) is given by (3). Then the associative law is verified as follows:

\[
(x \diamond y) \diamond z = (xy + x\theta + \theta y + \vartheta) \diamond z \quad \text{(by (3))}
\]

\[
= xyz + x\theta z + \theta y z + \vartheta z + x\theta y + \theta y \theta + \vartheta \theta + \theta z + \vartheta
\]

\[
= xyz + x\theta y + x\theta z + x\vartheta + x\theta + \theta y z + \theta y \theta + \vartheta z + \vartheta \theta + \vartheta
\]

\[
= x \diamond (yz + y\theta + \theta z + \vartheta) \quad \text{(by (3))}
\]

\[
= x \diamond (y \diamond z).
\]

For the generalized distributive laws, we have that

\[
x \diamond (y + z) = xy + xz + x\theta + \theta y + \theta z + \vartheta \quad \text{(by (3))}
\]

\[
= (xy + x\theta + \theta y + \theta z + \vartheta) + (xz + x\theta + \theta z + \vartheta) - (x\theta + \vartheta)
\]

\[
= x \diamond y + x \diamond z - x \diamond 0, \quad \text{(by (3))}
\]

and similarly \((y + z) \diamond x = y \diamond x + z \diamond x - 0 \diamond x\). The compatibility follows from

\[
x \diamond y - x \diamond 0 - 0 \diamond y + \vartheta
\]

\[
= (xy + x\theta + \theta y + \vartheta) - (x\theta + \vartheta) - (\theta y + \vartheta) + \vartheta \quad \text{(by (3))}
\]

\[
= xy.
\]

Thus \(\diamond\) is a generalized circle multiplication on \(R\).

Conversely, suppose \(\diamond\) is a generalized adjoint multiplication on \(R\). Set \(\vartheta = 0 \diamond 0\), \(\lambda(x) = 0 \diamond x - 0 \diamond 0\), \(\rho(x) = x \diamond 0 - 0 \diamond 0\) and \(\theta = (\lambda, \rho)\). For any \(a, x, y \in R\), we have that

\[
\lambda(x + y) = 0 \diamond (x + y) - 0 \diamond 0 = 0 \diamond x + 0 \diamond y - 2\vartheta = \lambda(x) + \lambda(y),
\]

\[
\lambda(x)a = (0 \diamond x - 0 \diamond 0)(a - 0)
\]

\[
= 0 \diamond x \diamond a - 0 \diamond x \diamond 0 - 0 \diamond 0 \diamond a + 0 \diamond 0 \diamond 0 \quad \text{(by Lemma 2.3)}
\]

\[
= 0 \diamond (x \diamond a - x \diamond 0 - 0 \diamond a + 0 \diamond 0) - 0 \diamond 0
\]

\[
= 0 \diamond (xa) - 0 \diamond 0
\]

\[
= \lambda(xa),
\]

which imply that \(\lambda \in \text{End}(R_R)\). Symmetrically, \(\rho \in \text{End}(R_R)\). Note that

\[
x \lambda(y) = (x - 0)(0 \diamond y - 0 \diamond 0)
\]

\[
= x \diamond 0 \diamond y - x \diamond 0 \diamond 0 - 0 \diamond 0 \diamond y + 0 \diamond 0 \diamond 0 \quad \text{(by Lemma 2.3)}
\]

\[
= (x \diamond 0 - 0 \diamond 0)(y - 0) \quad \text{(by Lemma 2.3)}
\]

\[
= \rho(x)y.
\]
Hence \(\theta \) is a bitranslation of \(R \) such that \(\theta x = 0 \circ x - 0 \circ 0 \) and \(x \theta = x \circ 0 - 0 \circ 0 \).

Thus \(\theta \theta = 0 \circ \vartheta - 0 \circ 0 = \vartheta \circ 0 - 0 \circ 0 = \vartheta \theta \). Since

\[
(\theta x)\theta = (0 \circ x - 0 \circ 0) \circ 0 - 0 \circ 0 = 0 \circ x - 0 \circ 0 \circ 0,
\theta(x\theta) = 0 \circ (x \circ 0 - 0 \circ 0) \circ 0 = 0 \circ x - 0 \circ 0 \circ 0,
\]

we have that \((\theta x)\theta = \theta(x\theta) \), that is, \(\theta \) is self-permutable. Observing that

\[
(\theta + \pi_{\varphi})x = \theta x + \vartheta x
= 0 \circ x - 0 \circ 0 + \vartheta \circ x - \vartheta \circ 0 - 0 \circ x + \vartheta
= \vartheta \circ x - 0 \circ 0 - 0 \circ \vartheta + 0 \circ 0
= \theta(0 \circ x) - \theta \vartheta
= \theta(0 \circ x - \vartheta)
= \theta^2 x,
\]

and similarly \(x(\theta + \pi_{\varphi}) = x\theta^2 \), we see that \(\theta^2 = \theta + \pi_{\varphi} \). It follows that \((\theta, \vartheta) \) is an associated pair of \(R \). Since

\[
x \circ y = xy + x \circ 0 + 0 \circ y - \vartheta = xy + x \theta + \theta y + \vartheta
\]

we see that \(\circ \) is induced by \((\theta, \vartheta) \).

If two associated pairs \((\theta, \vartheta) \) and \((\theta', \vartheta') \) of \(R \) induce the same generalized adjoint multiplication on \(R \), then for any \(x, y \in R \) we have

\[
xy + x \theta + \theta y + \vartheta = xy + x \theta' + \theta' y + \vartheta',
\]

and so we have \(\vartheta = \vartheta' \) by taking \(x = y = 0, x \theta = x \theta' \) by taking \(y = 0 \), and \(\theta y = \theta' y \) by taking \(x = 0 \), whence \((\theta, \vartheta) = (\theta', \vartheta') \). Thus the correspondence \((\theta, \vartheta) \rightarrow \circ \) is a 1-1 correspondence.

Theorem 2.5 is an analogue of results in [26, 27].

Corollary 2.6. If \(\text{Ann}(R) = 0 \), then any generalized adjoint multiplication on \(R \) is induced by a bitranslation \(\theta \) of \(R \) such that \(\theta^2 - \theta \in R \), and further there exists a 1-1 correspondence between the set of bitranslations being idempotent modulo \(\pi(R) \) and generalized adjoint multiplications on \(R \).

Proof. If \(\text{Ann}(R) = 0 \), then \(\Omega(R) \) is an ideal extension of \(R \). Let \(\circ \) be the generalized adjoint multiplication on \(R \) induced by an associated pair \((\theta, \vartheta) \). Then \(\theta^2 - \theta \in R \), and \(\theta^2 = \theta + \pi_{\varphi} \) implies \(\vartheta = \theta^2 - \theta \) since \(\text{Ann}(R) = 0 \). It is clear that \(x \circ y = (x + \theta)(y + \theta) - \theta \). From Theorem 2.5 the correspondence \(\theta \rightarrow \circ \) is a 1-1 correspondence.

The following corollary will be used freely throughout the rest of this paper.

Corollary 2.7. For any \(x_i, y_j \in R \), and \(p_i, q_j \in \mathbb{Z} \) with \(\sum p_i = \sum q_j = 1 \), we have

\[
\left(\sum p_i x_i \right) \circ \left(\sum q_j y_j \right) = \sum p_i q_j (x_i \circ y_j).
\]
Proof. For any \(x_i, y_j \in R \), and \(p_i, q_j \in \mathbb{Z} \) with \(\sum p_i = \sum q_j = 1 \), we have
\[
\sum p_i q_j (x_i \circ y_j) = \sum p_i q_j (x_i y_j) + \sum p_i q_j (x_i \theta) + \sum p_i q_j (\theta y_j) + \sum p_i q_j \theta = (\sum p_i x_i) (\sum q_j y_j) + (\sum p_i x_i) \theta + \theta (\sum q_j y_j) + \theta = (\sum p_i x_i) \circ (\sum q_j y_j),
\]
as desired. \(\square \)

Corollary 2.8. If \(x, y \in R^\circ \) such that \(x \circ y = y \circ x \) and \(p, q \in \mathbb{Z} \) such that \(p + q = 1 \), then
\[
(px + qy)^n = \sum_{i=0}^{n} p^i q^{n-i} \left(\begin{array}{c} n \\ i \end{array} \right) x^i \circ y^{n-i}.
\]
Proof. As the usual binomial theorem, the corollary can be proved by use of an induction on \(n \) and Corollary 2.7. \(\square \)

By an affine subsemigroup of \(R^\circ \) we mean a subsemigroup \(M \) of \(R^\circ \) such that \(x + y - z \in S \) for any \(x, y, z \in M \).

For example, for an ideal extension \(\tilde{R} \) of \(R \) (i.e., \(\tilde{R} \) is a ring containing \(R \) as an ideal) and \(a \in \tilde{R} \) such that \(a^2 - a \in R \), then \((R + a, \bullet) \) is an affine subsemigroup of \(\tilde{R}^\bullet \). The semigroup \((R + a, \bullet) \) was studied in [18] to deal with lifting idempotents.

Definition 2.9. Let \(M \) and \(N \) be affine subsemigroups of \(GA \)-semigroups \(R^\circ \) and \(S^\circ \) of rings \(R \) and \(S \), respectively. If there exists a bijection \(\phi \) from \(M \) onto \(N \) such that
\[
\phi(x + y - z) = \phi(x) + \phi(y) - \phi(z) \quad \text{and} \quad \phi(x \circ y) = \phi(x) \circ \phi(y)
\]
for any \(x, y, z \in M \), then \(M \) and \(N \) are called affinely isomorphic, notationally \(M \cong N \).

Corollary 2.10. Let \(\tilde{R} \) be an ideal extension of \(R \). Then any \(a \in \tilde{R} \) such that \(a^2 - a \in R \) induces a generalized adjoint multiplication on \(R \) given by
\[
x \circ y = (x + a)(y + a) - a
\]
for \(x, y \in R \), and \(R^\circ \) is affinely isomorphic to the affine subsemigroup \((R + a, \bullet) \) of \(\tilde{R}^\bullet \).

Proof. It is clear that \(a \) induces a bitranslation \(\theta \) of \(R \) by \(\theta x = ax \) and \(x \theta = xa \). If \(a^2 - a \in R \), then \((\theta, a^2 - a) \) is an associated pair of \(R \) and the induced generalized adjoint multiplication on \(R \) given by \(x \circ y = xy + xa + ay + \theta = (x + a)(y + a) - a \). Let \(\phi \) be a map from \(R \) into \(R + a \) given by \(\phi(x) = x + a \) for any \(x \in R \). Then it is easy to check that \(\phi \) is an affine isomorphism from \(R^\circ \) onto the affine subsemigroup \((R + a, \bullet) \) of \(\tilde{R}^\bullet \). \(\square \)
Lemma 2.11. Let M be an affine subsemigroup of R°. Then

$$M - M = M - a = \left\{ \sum p_i s_i \mid s_i \in M, \text{ and } p_i \in \mathbb{Z} \text{ with } \sum p_i = 0 \right\}$$

for any $a \in M$, and $M - M$ is a subring of R.

Proof. The proof is a routine computation. \qed

Theorem 2.12. Let M and N be affine subsemigroups of GA-semigroups R° and S° of rings R and S, respectively. If $M \simeq N$, then the rings $M - M$ and $N - N$ are isomorphic to each other. In particular, if $R^\circ \simeq S^\circ$, then $R \simeq S$.

Proof. Suppose ϕ is an affine isomorphism from M onto N. Take a fixed $a \in M$ and let ϕ^* be the mapping from M into N defined by $\phi^*(x - a) = \phi(x) - \phi(a)$ for any $x \in M$. Then we see that ϕ^* is a bijection. Since for any $x, y \in M$,

$$\phi^*((x - a) - (y - a))$$

$$= \phi^*((x - y + a) - a)$$

$$= \phi(x - y + a) - \phi(a)$$

$$= \phi(x) - \phi(y) + \phi(a) - \phi(a)$$

$$= \phi^*(x - a) - \phi^*(y - a),$$

we have that ϕ^* is a ring isomorphism from the ring $M - M$ onto $N - N$ by Lemma 2.11. \qed

Lemma 2.13. Let M be an affine subsemigroup of R°.

(i) If M has identity, then $M \simeq (M - M, \circ)$;

(ii) If M has zero, then $M \simeq (M - M, \bullet)$.

Proof. Given $e \in (M, \circ)$, we define $\phi : M \to M - M$ by $\phi(x) = x - e$. It is clear that $\phi(x + y - z) = \phi(x) + \phi(y) - \phi(z)$. Note that for any $x, y \in M$

$$(x - e)(y - e) = x \circ y - x \circ e - e \circ y + e \circ e. \quad (4)$$

Thus, if e is identity of M, then

$$\phi(x \circ y) = x \circ y - e$$

$$= (x - e)(y - e) + x + y - 2e \quad \text{(by (4))}$$

$$= (x - e) \circ (y - e)$$

$$= \phi(x) \circ \phi(y);$$
while if \(e \) is zero of \(M \), then by (4),
\[
\phi(x \circ y) = x \circ y - e = (x - e)(y - e) = \phi(x)\phi(y).
\]
Hence \(\phi \) is an affine isomorphism if \(e \) is identity or zero of \(M \). \(\square \)

Theorem 2.14. Let \(R^\circ \) be a GA-semigroup of a ring \(R \). Then

(i) \(R^\circ \) has identity if and only if \(R^\circ \cong R^\bullet \);

(ii) \(R^\circ \) has zero if and only if \(R^\circ \cong R^\bullet \);

(iii) if \(R \) has identity, then \(R^\circ \cong R^\bullet \cong R^\circ \).

Proof. (i) and (ii) are immediate results of Lemma 2.13. If \(R \) has 1, then \(R = \Omega(R) \) and so by Corollary 2.10 there is \(a \in R \) such that \(x \circ y = (x + a)(y + a) - a \) for any \(x, y \in R \). Clearly, \(-a \) is zero of \(R^\circ \). Thus \(R^\circ \cong R^\bullet \) by (ii), and \(R^\circ \cong R^\bullet \) under the affine isomorphism \(x \to 1 + x \) from \(R^\circ \) onto \(R^\bullet \), proving (iii). \(\square \)

3. GA-semigroups of \(\pi \)-regular rings

Recall that a semigroup \(S \) is (left, right, completely) \(\pi \)-regular if and only if for any \(x \in S \) there exists a positive integer \(n \) such that \(x^n \in Sx^{n+1} \), \(x^n \in x^{n+1}S \), \(x^n \in Sx^{n+1} \cap x^{n+1}S \) \(x^n \in x^nSx^n \).

For a positive integer \(n \), a semigroup \(S \) is called (left, right, completely) \(\pi_n \)-regular if \((x^n \in Sx^{n+1} \), \(x^n \in x^{n+1}S \), \(x^n \in Sx^{n+1} \cap x^{n+1}S \) \(x^n \in x^nSx^n \) for any \(x \in S \). By a (left, right, completely) \(\pi_0 \)-regular semigroup we mean a (left, right, completely) \(\pi \)-regular semigroup.

For a non-negative integer \(n \), a ring is called (left, right, completely) \(\pi_n \)-regular if its multiplicative semigroup is (left, right, completely) \(\pi_n \)-regular.

In [15] we proved that the adjoint semigroup of a \(\pi \)-regular ring is \(\pi \)-regular and in [16], we proved further that the adjoint semigroup of a (left, right, completely) \(\pi_n \)-regular ring is (left, right, completely) \(\pi_n \)-regular. In this section, we will prove that this is true for GA-semigroups.

Lemma 3.1. For any \(a, b, x, y, z \in R \), we have
\[
(a - a \circ x)z(b - y \circ b) \in a \circ R \circ b - a \circ R \circ b.
\]

Proof. Noting that \(a \circ R \circ b \) is an affine subsemigroup of \(R^\circ \), we see that
\[
(a - a \circ x)z(b - y \circ b) = (a - a \circ x)(z - 0)(b - y \circ b)
\]
\[
= a \circ z \circ b - a \circ z \circ y \circ b - a \circ 0 \circ b + a \circ 0 \circ y \circ b - a \circ x \circ z \circ b
\]
\[
+ a \circ x \circ z \circ y \circ b + a \circ x \circ 0 \circ b - a \circ x \circ 0 \circ y \circ b \quad \text{(by Lemma 2.3)}
\]
\[
\in a \circ R \circ b - a \circ R \circ b, \quad \text{(by Lemma 2.11)}
\]
completing the proof. \(\square \)
Lemma 3.2. Let $A = b \diamond R \diamond c - b \diamond R \diamond c$. If x commutes with c in R^e, then $a - a \diamond x \in A$ implies $a - a \diamond x^n \in A$ for any positive integer n.

Proof. To prove the lemma, we proceed with an induction on n. It is trivial for $n = 1$. Assume $n > 1$ and $a - a \diamond x^{n-1} \in A$. Let $a - a \diamond x^{n-1} = b \diamond y \diamond c - b \diamond z \diamond c$. Then multiplication (with respect to \diamond) by x on the right shows that

$$a \diamond x - a \diamond x^n = b \diamond y \diamond x \diamond c - b \diamond z \diamond x \diamond c,$$

whence by Lemma 2.11

$$a - a \diamond x^n = a - a \diamond x + a \diamond x - a \diamond x^n$$

$$= a - a \diamond x + b \diamond y \diamond x \diamond c - b \diamond z \diamond x \diamond c$$

$$\in A,$$

as desired. \qed

Lemma 3.3. Let a and x commute with each other in R^e. Then for any positive integers m and n we have that

$$(a - a^{[m]} \diamond x)^n = a^{[n]} - a^{[n+m-1]} \diamond y,$$

for some y commuting with a and x in R^e.

Proof. By Corollary 2.4,

$$(a - a^{[m]} \diamond x)^n$$

$$= \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} a^{[i]} \diamond (a^{[m]} \diamond x)^{[n-i]}$$

$$= \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} a^{[i+m(n-i)]} \diamond x^{[n-i]}$$

$$= a^{[n]} - \sum_{i=0}^{n-1} (-1)^{n-i+1} \binom{n}{i} a^{[n+m-1]} \diamond a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]}$$

$$= a^{[n]} - a^{[n+m-1]} \diamond \sum_{i=0}^{n-1} (-1)^{n-i+1} \binom{n}{i} (a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]}),$$

since $\sum_{i=0}^{n-1} (-1)^{n-i+1} \binom{n}{i} = 1$. Let

$$y = \sum_{i=0}^{n-1} (-1)^{n-i+1} \binom{n}{i} (a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]}).$$

Then $(a - a \diamond x)^n = a^{[n]} - a^{[n+m-1]} \diamond y$ and it is clear that y commutes with both a and x. \qed
Lemma 3.4. Let \(a, w, x, y, z \in R \) such that \(x, y \) and \(z \) commute with \(a \) in \(R^\circ \), and let \(n \) be a positive integer, and \(k \) and \(m \) be non-negative integers not all zero. If

\[
(a - a \odot x \odot a)^n = (a - a \odot y)^k (a - z \odot a)^m,
\]
then \(a^n = a^k \odot u \odot a^m \) for some \(u \in R \).

Proof. Let \(A = a^k \odot R \odot a^m - a^k \odot R \odot a^m \). Then by Lemma 3.3 and Lemma 3.1, we have

\[
a^n - a^{n+1} \odot r = (a^k - a^k \odot s)w(a^m - t \odot a^m) \in A
\]
for some \(r, s, t \in R \) commuting with \(a \). By Lemma 3.2, \(a^n - a^{n+k+m} \odot r \in A \).

Let \(a^n - a^{n+k+m} \odot r = a^k \odot b \odot a^m - a^k \odot c \odot a^m \). Then we have that

\[
a^n = a^{n+k+m} \odot r + a^{k} \odot b \odot a^m - a^{k} \odot c \odot a^m = a^k \odot a^n \odot r + b - c \odot a^m,
\]
as desired. \(\square \)

Theorem 3.5. For a non-negative integer \(n \), if a ring \(R \) is (left, right, completely) \(\pi_n \)-regular, then so is its any GA-semigroup.

Proof. Let \(R^\circ \) be a GA-semigroup of \(R \). If \(R \) be a right \(\pi_n \)-regular ring for \(n \geq 1 \),
then for any \(x \in R \), there exist \(y \in R \) such that \((x - x^0)^n = (x - x^0)^{n+1}y \). From Lemma 3.4, we deduce that \(x^n = x^{n+1} \odot z \) for some \(z \in R \), whence \((R, \odot) \) is a right \(\pi_n \)-regular semigroup. The remainder can be proved similarly. \(\square \)

4. GA-semigroups with idempotents

Let \(R^\circ \) be a GA-semigroup of \(R \). Then \(R^\circ \) is called (centrally) 0-idempotent if the additive 0 of \(R \) is an (central) idempotent in \(R^\circ \). Let \(R^\circ \) be a 0-idempotent GA-semigroup induced by the associated pair \((\theta, \vartheta)\). Then it is clear that \(\vartheta = 0 \) and so \(\theta \) is idempotent. One should note that (centrally) 0-idempotent is not an affine isomorphism invariant.

Lemma 4.1. Every GA-semigroup containing (central) idempotents is affinely isomorphic to a (centrally) 0-idempotent one.

Proof. Suppose \(R^\circ \) is a GA-semigroup containing an (central) idempotent \(e \). Let \(R_e = (R, \boxplus, \ast) \) with

\[
x \boxplus y = x + y - e,
\]

\[
x \ast y = (x - e)(y - e) + e,
\]
for any \(x, y \in R \). Then \(R_e \) is a ring in which \(e \) acts as additive zero and \(\ast \) is clearly an associative binary operation on \(R_e \). Denote by \(\boxminus \) the minus in \(R_e \). Noting that
Then the generalized adjoint multiplication induced by bimodules in a natural way. Let \(\tilde{\varphi} \) be a \(\varphi \)-self-permutable bitranslation. Given two rings \(R \) the usual matrix operations and \(\Psi : V \otimes S U \rightarrow T \) (write \(uv \) for \(\Phi(u \otimes v) \) and \(vu \) for \(\Psi(v \otimes u) \)) such that \(u(vu') = (uv)u' \) and \(v(wv') = (vw)v' \) for any \(u, u', v, v' \in U \) and \(v, v' \in V \). Let \(R = \begin{pmatrix} S & U \\ V & T \end{pmatrix} \) be the set of formal matrices. Thus \(\diamond \) is a GA-multiplication on the ring \(R_e \) such that \(R_e^\circ \) is (centrally) 0-idempotent. It is easy to see that the identity mapping of \(R \) is an affine isomorphism from \(R^\circ \) onto \(R_e^\circ \).

Given two rings \(S \) and \(T \), two bimodules \(sU_T \) and \(T V_S \), an \(S-S \)-homomorphism \(\phi : U \otimes_T V \rightarrow S \) and a \(T-T \)-homomorphism \(\psi : V \otimes_S U \rightarrow T \) (write \(uv \) for \(\phi(u \otimes v) \) and \(vu \) for \(\psi(v \otimes u) \)) such that \(u(vu') = (uv)u' \) and \(v(wv') = (vw)v' \) for any \(u, u', v, v' \in U \) and \(v, v' \in V \). Let \(R = \begin{pmatrix} S & U \\ V & T \end{pmatrix} \). Then \(R \) is a ring with the usual matrix operations, called the ring of the Morita context, or a Morita ring, and denoted by \(\mathcal{M}(S,T,U,V) \). Denote by \(\tilde{S} \) and \(\tilde{T} \) the Dorroh extension of \(S \) and \(T \), respectively. Then \(sU_T \) and \(T V_S \) are unitary bimodules in a natural way. Let \(\tilde{R} = \begin{pmatrix} \tilde{S} & U \\ V & \tilde{T} \end{pmatrix} \). Then \(\tilde{R} \) is a unitary ring with the usual matrix operations and \(R \) is an ideal of \(\tilde{R} \). Let \(E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \tilde{R} \). Then the generalized adjoint multiplication induced by \(E_{11} \) is given by

\[
A \diamond B = AB + AE_{11} + E_{11}B \\
= (A + E_{11})(B + E_{11}) - E_{11} \\
= \begin{pmatrix} s \circ s' + uv' & (1 + s)u + ut' \\ u(1 + s') + tv' & uu' + tt' \end{pmatrix}
\]

for any \(A = \begin{pmatrix} s & u \\ v & t \end{pmatrix}, B = \begin{pmatrix} s' & u' \\ v' & t' \end{pmatrix} \in R \). The semigroup \(R^\circ \) is called the \(E_{11} \)-GA-semigroup of \(R \), denoted by \(\mathcal{M}_{11}(S,T,U,V) \). It is clear that the \(E_{11} \)-GA-semigroup \(\mathcal{M}_{11}(S,T,U,V) \) is 0-idempotent.

Lemma 4.2. Let \(R^\circ \) be a 0-idempotent GA-semigroup induced by an idempotent self-permutable bitranslation \(\theta \), and let \(R_{11} = \theta R \theta, R_{00} = \theta R(1 - \theta), R_{01} = (1 - \theta)R \theta, \) and \(R_{00} = (1 - \theta)R(1 - \theta) \). Then

(i) \(R = R_{11} \oplus R_{10} \oplus R_{01} \oplus R_{00} \) as additive groups;

(ii) \(R_{ij}R_{kl} \subset \delta_{jk}R_{ij}, \) where \(\delta_{jk} \) is the Kronecker delta, \(i, j, k, l = 0, 1; \)

(iii) if we write \(x = \sum x_{ij}, y = \sum y_{ij}, \) where \(x_{ij}, y_{ij} \in R_{ij}, i, j = 0, 1, \) then

\[
x \diamond y = (x_{11} \circ y_{11} + x_{10}y_{01}) + (x_{10} + x_{11}x_{10} + x_{10}y_{00}) \\
+ (x_{01} + x_{01}y_{11} + x_{00}y_{01}) + (x_{01}y_{10} + x_{00}y_{00});
\]
(iv) \(R_{ij} \), \(i, j = 0, 1 \), are subrings of \(R \) such that \(R_{11}^\circ = R_{11}^\circ \), \(R_{00}^\circ = R_{00}^\circ \), \(R_{10}^\circ \) is a right zero semigroup, and \(R_{01}^\circ \) is a left zero semigroup.

Proof. Since \(\theta \) is idempotent, the proof of (i) and (ii) is essentially similar to that of Pierce decomposition of a ring. For \(x = \sum x_{ij}, y = \sum y_{ij} \), where \(x_{ij}, y_{ij} \in R_{ij}, i,j = 0, 1 \), we have by (ii) that

\[
x \circ y = \left(\sum x_{ij} \right) \left(\sum y_{ij} \right) + \theta \left(\sum x_{ij} \right) + \left(\sum y_{ij} \right) \theta
\]

\[
= \left(\sum x_{ij} y_{kl} \right) + x_{11} + x_{10} + y_{11} + y_{01}
\]

\[
= (x_{11} \circ y_{11} + x_{10} y_{01}) + (y_{10} + x_{11} y_{10} + x_{10} y_{00})
\]

\[
+ (x_{01} + x_{01} y_{11} + x_{00} y_{01}) + (x_{01} y_{10} + x_{00} y_{00})
\]

proving (iii). If \(x, y \in R_{11} \), then

\[
x \circ y = xy + x\theta + \theta y = xy + x + y = x \circ y,
\]

whence \(R_{11}^\circ = R_{11}^\circ \), and similarly, \(R_{00}^\circ = R_{00}^\circ \). For any \(x, y \in R_{10} \), we have by (ii) that

\[
x \circ y = xy + x\theta + \theta y = y,
\]

which implies that \(R_{10}^\circ \) is a right zero semigroup, and similarly \(R_{01}^\circ \) is a left zero semigroup, proving (iv). \(\square \)

Theorem 4.3. Let \(R^\circ \) be a GA-semigroup of \(R \). If \(R^\circ \) contains idempotents, then there exists a Morita ring \(\mathcal{M}(S,T,U,V) \) such that \(R \simeq \mathcal{M}(S,T,U,V) \) and \(R^\circ \simeq \mathcal{M}^\circ_{11}(S,T,U,V) \).

Proof. Let \(R^\circ \) be a GA-semigroup induced by the associated pair \((\theta, \vartheta)\). If \(R^\circ \) contains idempotents, then by Lemma 4.1, without loss of generality, we may assume that \(R^\circ \) is 0-idempotent. By Lemma 4.2, it is a routine matter to verify that \(\mathcal{M}(R_{11}, R_{00}, R_{10}, R_{01}) \) is a Morita ring in a natural way. By Lemma 4.2 straightforward computation shows that the mapping \(\phi : R \rightarrow \mathcal{M}(R_{11}, R_{00}, R_{10}, R_{01}) \) defined by

\[
\phi(x) = \begin{pmatrix}
\theta x \theta \\
(1-\theta) x \theta \\
(1-\theta) x (1-\theta)
\end{pmatrix}
\]

is a ring isomorphism. Noting that

\[
\phi(x \circ y) = \phi(xy + x\theta + \theta y)
\]

\[
= \phi(x) \phi(y) + \phi(x\theta) + \phi(\theta y)
\]

\[
= \phi(x) \phi(y) + \begin{pmatrix}
\theta x \theta \\
(1-\theta) x \theta \\
0
\end{pmatrix} + \begin{pmatrix}
\theta y \theta \\
(1-\theta) y \theta \\
0
\end{pmatrix}
\]

\[
= \phi(x) \circ \phi(y),
\]

we see that \(\phi \) is an affine isomorphism from \(R^\circ \) onto the \(E_{11} \)-GA-semigroup of \(\mathcal{M}(R_{11}, R_{00}, R_{10}, R_{01}) \). \(\square \)
Corollary 4.4. A GA-semigroup R^e is (centrally) 0-idempotent if and only if there exists an ideal extension R with I of R and an idempotent $\varepsilon \in R$ (commuting with elements of R) such that $x \circ y = (x + \varepsilon)(y + \varepsilon) - \varepsilon$ for any $x, y \in R$.

Proof. It follows from Theorem 4.3, the definition of the E_{11}-GA-semigroup and taking $\varepsilon = E_{11}$. \hfill \square

Lemma 4.5. If $(a - a^{[2]})^2 = 0$, then there exists an idempotent $e = \sum p_i a^{[i]}$ with $\sum p_i = 1$ such that $a^{[2]} = e \circ a^{[2]}$.

Proof. By Corollary 2.4, $(a - a^{[2]})^2 = a^{[2]} - 2a^{[3]} + a^{[4]}$, and so

$$a^{[2]} = 2a^{[3]} - a^{[4]} = a^{[2]} \circ (2a - a^{[2]}) = a^{[2]} \circ (2a - a^{[2]})^{[2]} = a^{[2]} \circ (2a - a^{[2]})^{[3]}.$$

Note that by Corollary 2.8,

$$(2a - a^{[2]})^{[3]} = 8a^{[3]} - 12a^{[4]} + 6a^{[5]} - a^{[6]} = a^{[2]} \circ (8a - 12a^{[2]} + 6a^{[3]} - a^{[4]}).$$

Let $b = 8a - 12a^{[2]} + 6a^{[3]} - a^{[4]}$. Then b commutes with a and $a^{[2]} = a^{[2]} \circ b \circ a^{[2]}$. Let $e = a^{[2]} \circ b$. Then it is clear that e is an idempotent of R^e such that $a^{[2]} = e \circ a^{[2]}$.

Let $\Gamma(R) = \{ \theta \in \Omega(R) | \theta x = x\theta \text{ for any } x \in R \}$.

Lemma 4.6. A GA-semigroup of R induced by (θ, ϑ) has (central) idempotents if and only if θ can be lifted to an idempotent of $\Omega(R)$ (contained in $\Gamma(R)$).

Proof. Assume semigroup R^e has an idempotent e. Then

$$e = e \circ e = e^2 + e\theta + \theta e + \vartheta,$$

whence $\pi_e = \pi_e^2 + \pi_e \theta + \theta \pi_e + \pi_\vartheta = \pi_e^2 + \pi_e \theta + \theta e + \pi_e \theta - \theta = (\pi_e + \theta)^2 - \theta$. Thus $\pi_e + \theta$ is idempotent. Moreover, if e is central in R^e, then $e \circ x = x \circ e$ for any $x \in R$, that is, $ex + e\theta + \theta x + \vartheta = xe + x\theta + \theta e + \vartheta$, and particularly, $e\theta = \theta e$ by taking $x = 0$. Thus $(\pi_e + \theta)x = ex + \theta x = xe + x\theta = x(\pi_e + \theta)$, yielding $\pi_e + \theta \in \Gamma(R)$.

Assume θ can be lifted to an idempotent of $\Omega(R)$. Then $\pi_a + \theta$ is idempotent for some $a \in R$, whence $\pi_a = \pi_a^2 + \pi_a \theta + \theta \pi_a + \theta^2 - \theta = \pi_a^2 + \pi_a \theta + \theta \pi_a + \pi_\vartheta$. Thus we have $ax = a^2x + (a\theta)x + (\theta a)x + \vartheta x = a^{[2]}x$, forcing $(a - a^{[2]})R = 0$. In particular, $(a - a^{[2]})^2 = 0$, whence R^e contains an idempotent $e = \sum p_i a^{[i]}$ with $\sum p_i = 1$ by Lemma 4.5. Further, if $\pi_a + \theta$ is an idempotent contained in $\Gamma(R)$. Then for any $x \in R$, $(\pi_a + \theta)x = x(\pi_a + \theta)$, that is, $ax + \theta x = xa + x\theta$, and particularly $\theta a = a\theta$ by taking $x = a$, whence

$$a \circ x = ax + \theta x + a\theta + \vartheta = xa + x\theta + \theta a + \vartheta = x \circ a.$$

Hence $e \circ x = x \circ e$, that is, e is a central idempotent of R^e. \hfill \square

Theorem 4.7. Consider the following conditions:

(i) every GA-semigroup of R contains (central) idempotents;
(ii) in any ideal extension \(\hat{R} \) of \(R \), idempotents of \(\hat{R}/R \) can be lifted to idempotents of \(\hat{R} \) (contained in the centralizer of \(R \) in \(\hat{R} \));

(iii) idempotents of \(\Omega(R)/\pi(R) \) can be lifted to idempotents of \(\Omega(R) \) (contained in \(\Gamma(R) \)). Then (iii) \(\Rightarrow \) (i) \(\Rightarrow \) (ii). Moreover, if \(\text{Ann}(R) = 0 \), then (i), (ii) and (iii) are equivalent.

Proof. (iii) \(\Rightarrow \) (i) follows from Lemma 4.6.

(i) \(\Rightarrow \) (ii): If \(a \in \hat{R} \) and \(a^2 - a \in R \), then the pair \((\theta, \vartheta)\) defined by
\[
 \theta x = ax, \quad x\theta = xa, \quad \text{and} \quad \vartheta = a^2 - a
\]
is an associated pair and so \(x \circ y = xy + xa + ay + a^2 - a \) defines a GA-multiplication on \(R \). If \(e \) is an idempotent of \(R^e \), then \(e = e^2 + ea + ae + a^2 - a = (e + a)^2 - a \), and so \(e + a \) is an idempotent of \(\hat{R} \). Further if \(e \) is a central idempotent of \(R^e \), then \(e \circ x = x \circ e \) for any \(x \in \hat{R} \), that is
\[
e x + ea + ax + \vartheta = xe + xa + ae + \vartheta,
\]
and particularly, \(ea = ae \) by taking \(x = 0 \). Thus \((e + a)x = ex + ax = xe + xa = x(e + a) \), which implies that \(e + a \) is contained in the centralizer of \(R \) in \(\hat{R} \).

The remainder is clear. \(\square \)

The following corollary is independently interesting, which is a generalization of a classical result in ring theory which states that idempotents modulo a nil ideal can be lifted ([28]) and is a generalization of ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which extends the well-known Lallement’s lemma to eventually regular semigroups (i.e., \(\pi \)-regular semigroups).

Theorem 4.8. In any ring, idempotents modulo a \(\pi \)-regular ideal can be lifted.

Proof. By Theorem 3.5, any GA-semigroup of a \(\pi \)-regular ring contains idempotent, and so by Theorem 4.7 idempotents modulo a \(\pi \)-regular ideal can be lifted. \(\square \)

If \(R \) is a ring with \(ECI \), then idempotents can be lifted from \(\Omega(R)/R \) to \(\Omega(R) \) ([7, Corollary 3.6]), and so any GA-semigroup of \(R \) contains idempotents by Theorem 4.7. Particularly, every GA-semigroup of a biregular ring contains idempotents. On the other hand, there is a ring such that idempotents modulo the radical cannot be lifted. Hence a GA-semigroup of a radical ring need not contain idempotents.

A semigroup \(S \) is called completely primitive if the left ideal \(Se \) and the right ideal \(eS \) are minimal for every idempotent \(e \) of \(S \) ([6]). A completely primitive semigroup \(S \) has kernel which is completely simple and contains all of idempotents of \(S \) ([9]).

Lemma 4.9. Let \(R^e \) be a GA-semigroup of a radical ring \(R \). If \(R^e \) contains idempotents, then \(R^e \) is completely primitive.
Proof. Let e be an idempotent of R^e. Then it is sufficient to prove that $e \circ R \circ e$ is a group. Since $e \circ R \circ e \simeq (e \circ R \circ e - e \circ R \circ e, o)$ by Lemma 2.11 and Lemma 2.13, we have to prove that $e \circ R \circ e - e \circ R \circ e$ is a radical ring. By Corollary 4.4, there are an ideal extension \tilde{R} of R and an idempotent $\varepsilon \in \tilde{R}$ such that $x \circ y = (x + \varepsilon)(y + \varepsilon) - \varepsilon$ for any $x, y \in R$. Thus $e \circ R \circ e - e \circ R \circ e = (e + \varepsilon)(R + \varepsilon)(e + \varepsilon) - (e + \varepsilon)(R + \varepsilon)(e + \varepsilon) = (e + \varepsilon)R(e + \varepsilon)$. Since $e \circ e = e$, we have that $e + \varepsilon$ is an idempotent of \tilde{R} and so it is easy to see that $(e + \varepsilon)R(e + \varepsilon)$ is a radical ring since R is a radical ring. □

Lemma 4.9 is a GA-semigroup version of [18, Theorem 1 (b)–(c)]. Actually, many results in [18] can be reexplained in terms of GA-semigroup.

Theorem 4.10. Any GA-semigroup of a nil ring is a completely primitive π-regular semigroup.

Proof. It follows from Theorem 3.5 and Lemma 4.9. □

Theorem 4.11. Let R be a ring with descending chain condition for principal right ideals. Then any GA-semigroup of R is completely π-regular. Particularly, any GA-semigroup of a right Artinian ring is completely π-regular.

Proof. If R is a ring with descending chain condition for principal right ideals, then R is completely π-regular by Dischinger [12, Theorem 1] and Azumaya [2, Lemma 1]. □

References

Received November 5, 2005