STRUCTURAL THEOREMS FOR FAMILIES OF FOURIER HYPERFUNCTIONS

B. STANKOVIĆ

(Presented at the 7th Meeting, held on October 27, 2000)

Abstract. A structural characterization of convergent and bounded families of Fourier hyperfunctions is given.

AMS Mathematics Subject Classification (2000): 46F15
Key Words: Fourier hyperfunctions, families of hyperfunctions

1. Introduction

Let \(\{f_h; \ h \in H\} \) be a family of Fourier hyperfunctions which is convergent or bounded. It is of interest for the theory or applications to know whether this family can be given by a unique differential operator \(J(D) \) and a family of continuous or smooth functions \(\{p_h; \ h \in H\} \) such that \(f_h = J(D)p_h, \ h \in H, \) where \(\{p_h; \ h \in H\} \) is convergent or bounded but in some space of functions.

This kind of results for distributions one can find already by Schwartz [9] and in [1], [4], [5], [8] for ultradistributions. In [2] some results have been proved which relate to convergent sequences of hyperfunctions with supports belonging to a compact set \(K. \) In [6], [7] convergent sequences of Fourier hyperfunctions have been treated and in [11], Fourier hyperfunctions having
the S-asymptotics. In this paper we prove a theorem for any convergent or bounded net without new conditions, which generalizes the results in [6], [7] and [11].

2. Notation and definitions

Let \mathcal{O} be the sheaf of analytic functions defined on \mathbb{C}^n.

We denote by \mathbb{D}^n the radial compactification of \mathbb{R}^n, and supply it with the usual topology. The sheaf $\mathring{\mathcal{O}}_{\mathbb{D}^n}^{-\delta}$, $\delta \geq 0$, on $\mathbb{D}^n + i\mathbb{R}^n$ is defined as follows: For any open set $U \subset \mathbb{D}^n + i\mathbb{R}^n$, and $\delta \geq 0$, $\mathring{\mathcal{O}}_{\mathbb{D}^n}^{-\delta}(U)$ consists of those elements F of $\mathcal{O}(U \cap \mathbb{C}^n)$ which satisfy $|F(z)| \leq C_{V, \varepsilon} \exp(-\langle \delta - \varepsilon \rangle \text{Re}z)$ uniformly for any open set $V \subset \mathbb{C}^n$, $V \subset U$, and for every $\varepsilon > 0$. By $\mathring{\mathcal{O}}$ we denote the sheaf on $\mathbb{D}^n + i\mathbb{R}^n$, $\mathring{\mathcal{O}}(U) = \mathring{\mathcal{O}}^0(U)$. The derived sheaf $\mathcal{H}_{\mathbb{D}^n}(\mathring{\mathcal{O}})$, denoted by \mathcal{Q}, is called the sheaf of Fourier hyperfunctions. It is a flabby sheaf on \mathbb{D}^n.

Let I be a convex neighbourhood of $0 \in \mathbb{R}^n$ and $U_j = \{(\mathbb{D}^n + iI) \cap \{\text{Im}z_j \neq 0\}\}$, $j = 1, ..., n$. The family $\{\mathbb{D}^n + iI, U_j; j = 1, ..., n\}$ gives a relative Leray covering for the pair $\{(\mathbb{D}^n + iI), (\mathbb{D}^n + iI) \setminus \mathbb{D}^n\}$ relative to the sheaf \mathcal{O}. Thus

$$\mathcal{Q}(\mathbb{D}^n) = \mathring{\mathcal{O}}((\mathbb{D}^n + iI)\#\mathbb{D}^n) / \sum_{j=1}^{n} \mathring{\mathcal{O}}((\mathbb{D}^n + iI)\#_j\mathbb{D}^n),$$

where $(\mathbb{D}^n + iI)\#\mathbb{D}^n = U_1 \cap ... \cap U_n$ and $(\mathbb{D}^n + iI)\#_j\mathbb{D}^n = U_1 \cap ... \cap U_{j-1} \cap U_{j+1} \cap ... \cap U_n$. Similarly, $\mathring{\mathcal{Q}}_{\mathbb{D}^n}^{-\delta}$, $\delta > 0$ is defined using $\mathring{\mathcal{O}}_{\mathbb{D}^n}^{-\delta}$ instead of $\mathring{\mathcal{O}}$ (cf. Definition 8.2.5. in [3]).

We shall use the notation Λ for the set of $n-$vectors with entry $\{-1, 1\}$; the corresponding open orthants in \mathbb{R}^n will be denoted by Γ_{σ}, $\sigma \in \Lambda$. A global section $f = [F] \in \mathcal{Q}(\mathbb{D}^n)$ is defined by $F \in \mathcal{O}((\mathbb{D}^n + iI)\#\mathbb{D}^n); F = (F_{\sigma}; \sigma \in \Lambda)$, where $F_{\sigma} \in \mathring{\mathcal{O}}(\mathbb{D}^n + iI_{\sigma}), I_{\sigma} = I \cap \Gamma_{\sigma}, \sigma \in \Lambda$. F is the defining function for f.

Recall the topological structure of $\mathcal{Q}(\mathbb{D}^n)$. Let $f = [F]$, and K be a compact set in \mathbb{R}^n then by $P_{K, \varepsilon}(F) = \sup_{z \in \mathbb{R}^n+iK} |F(z)| \exp(-\varepsilon |\text{Re}z|), \varepsilon > 0, K \subset I \setminus \{0\}$, is defined as the family of semi-norms in $\mathring{\mathcal{O}}((\mathbb{D}^n + iI)\#\mathbb{D}^n)$; $\mathring{\mathcal{O}}((\mathbb{D}^n + iI)\#\mathbb{D}^n)$ is a Fréchet and Montel space, as well as the quotient space $\mathcal{Q}(\mathbb{D}^n)$ with the family of semi-norms $p_{K, \varepsilon}([F]) = \inf_{G} P_{K, \varepsilon}(F + G)$, where G belongs to the denominator in (1). In $\mathcal{Q}(\mathbb{D}^n)$ a weak bounded set
is bounded. We associate to \(f = [F^*] \)
\[
f(x) \cong \sum_{\sigma \in \Lambda} F_{\sigma}(x + i\Gamma_{\sigma}0), \quad F_{\sigma} \in \tilde{O}(D^n + iI_{\sigma}), \quad F_{\sigma} = \text{sgn}\sigma F^*_\sigma. \tag{2}\]

Let \(P_* = \text{ind lim}_{I \geq 0} \text{ind lim}_{\delta \downarrow 0} \tilde{O}^{-\delta}(D^n + iI). \) \(P_* \) and \(Q(D^n) \) are topologically dual to each other ([3, Theorem 8.6.2]).

The Fourier transform on \(Q(D^n) \) is defined by the use of functions \(\chi_{\sigma} = \chi_{\sigma_1}...\chi_{\sigma_n} \), where \(\sigma_k = \pm 1, \ k = 1,..., n, \) \(\sigma = (\sigma_1,...,\sigma_n) \) and \(\chi_1(t) = e^t/(1 + e^t), \chi_{-1}(t) = 1/(1+e^t), \ t \in \mathbb{R}. \) Let \(f \) be given by (2). The Fourier transform of \(f \) is defined by
\[
\mathcal{F}(f) \cong \sum_{\sigma \in \Lambda} \sum_{\delta \in \Lambda} \mathcal{F}(\chi_{\delta}F_{\sigma})(\xi - i\Gamma_{\delta}0), \tag{3}\]
where \(\mathcal{F}(\chi_{\delta}F_{\sigma}) \in \tilde{O}(D^n - iI_{\delta}) \) and \(\mathcal{F}(\chi_{\delta}F_{\sigma})(z) = O(e^{-w|z|}) \) for a suitable \(w > 0 \) along the real axis outside the closed \(\sigma \)-orthant (cf. Proposition 8.3.2 in [3]).

A function \(v \) defined on \(\mathbb{R}^n \) (on \(C^n \)) is of infra-exponential type if for every \(\varepsilon > 0 \) there exists \(C_\varepsilon > 0 \) such that \(|v(z)| \leq C_\varepsilon e^{\varepsilon|z|}, \ z \in \mathbb{R}^n \) \((z \in C^n) \).

A local operator \(J(D) = \sum b_{\alpha}D^\alpha \) with \(\lim_{|\alpha| \rightarrow \infty} \sqrt{|\alpha|}b_{\alpha}/|\alpha| = 0 \) acts on \(Q(D^n) \) as a sheaf homomorphism and continuously on \(Q(D^n) \).

3. Main results

Theorem 1. Let \(f_h = [F^*_h] \in Q(D^n), \) \(F^*_h \in \tilde{O}((D^n + iI)^\#D^n), \) \(h \in H. \) If:
 a) The net \(\{f_h\}_{h \in H} \) converges in \(Q(D^n) \) or
 b) \(\{f_h; h \in H\} \) is a bounded set in \(Q(D^n) \).

Then there exist an elliptic local operator \(J(D) \) and nets of functions \(\{q_{h,s}\}_{h \in H}, \ s \in \Lambda, \) such that:

1. \(q_{h,s}(x), h \in H, \ s \in \Lambda, \) are smooth functions and of exponential type on \(\mathbb{R}^n. \)

2. \(q_{h,s}(z) \in \tilde{O}(D^n + iI_s), \ s \in \Lambda, \ h \in H, \) where \(I_s, \ s \in \Lambda, \) does not depend on \(h \in H. \)

3. \(f_h = J(D) \sum_{s \in \Lambda} q_{h,s}(x + i\varepsilon s), \) \(h \in H, \) \(0 < \varepsilon \leq \varepsilon_0. \)

4. There exists \(\varepsilon_0 > 0 \) such that for any compact sets \(K_1 \subset \subset \mathbb{R}^n \) and \(K_2 \subset \subset (0,\varepsilon_0) : \)
In case a) nets \(\{q_{h,s}(x + i\epsilon s)\}_{h \in H}, s \in \Lambda \) converge uniformly in \(x \in K_1 \) and \(\epsilon \in K_2 \).

In case b) sets \(\{q_{h,s}(x + i\epsilon s)\}_{h \in H}, s \in \Lambda \), are uniformly bounded for \(x \in K_1 \) and \(\epsilon \in K_2 \).

Proof. The idea of the proof is the same as in [11]. Let \(f_h = [F_h^\ast] \) be given by (2) and their Fourier transform by (3). Let \(\varphi \) be a monotone increasing continuous, positive valued function \(\varphi(r), r \geq 0 \), which satisfies \(\varphi(0) = 1, \varphi(r) \to \infty, r \to \infty \).

By Lemma 1.2 in [2] there exists an elliptic local operator \(J(D) \) whose Fourier transform \(J(\zeta) \) satisfies the estimate:

\[
|J(\zeta)| \geq C \exp(|\zeta|/\varphi(|\zeta|)), \quad |\text{Im}\zeta| \leq 1.
\]

(4)

By (4), \(J^{-2}(\zeta) \in \tilde{O}(\mathbb{D}^n + i\{||\mu|| < 1\}) \). Denote by \(g = F^{-1}(1/J^2) \). By Theorem 8.2.6 in [3], \(g \in \mathcal{Q}^{-1}(\mathbb{D}^n) \). Consequently \(\delta = J_0(D)g, J_0 = J^2, \) and

\[
f_h = J_0(D)(g \ast f_h), \quad h \in H.
\]

(5)

By the properties of the Fourier transform, cited properties of \(\chi_{\tilde{\sigma}}, \tilde{\sigma} \in \Lambda \), and supposition on \(F_h^\ast, h \in H \), we have for every \(h \in H : \)

(a) \(\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}(\zeta) \in \tilde{O}(x - iI_{\tilde{\sigma}}) \) and decreases exponentially outside any cone containing \(\Gamma_{\sigma} \) as a proper subcone.

(b) \(\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}\chi_{\tilde{s}} \in \tilde{O}(x - iI_{\tilde{s}}) \) and decreases exponentially outside any cone containing \(\Gamma_{\sigma} \) and \(\Gamma_{s} \) as proper subcones.

(c) \(\mathcal{F}^{-1}(\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}\chi_{\tilde{s}}) \in \tilde{O}(x + i(I_{\sigma} \cup I_s)) \) and decreases exponentially outside any cone containing \(\Gamma_{\tilde{\sigma}} \) as a proper subcone. We shall use these properties considering Fourier hyperfunctions \(f_h \ast g, h \in H \), given in (5).

The analysis of \(f_h \ast g \) is very similar to the analysis of \(f \ast g \) in [11]. However we give it because of the integrity of the proof.

\[
f_h \ast g = \mathcal{F}^{-1}(\mathcal{F}(f_h)\mathcal{F}(g))
\]

\[
\cong \frac{1}{(2\pi)^n} \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda_{\mathbb{R}^n}} \int e^{iz_{\sigma} \zeta_\sigma} \mathcal{F}(\chi_{\sigma} F_{h,\sigma})(\zeta_\sigma)/J^2(\zeta_\sigma) d\xi, h \in H,
\]

where \(\zeta_\sigma = \xi + i\eta_\sigma, \eta_\sigma \in -I_{\tilde{\sigma}} \) and \(z_\sigma \in \mathbb{R}^n + iI_{\sigma} \).

For fixed \(\sigma \), for all \(\tilde{\sigma} \in \Lambda \) and \(z_\sigma \in \mathbb{R}^n + iI_{\tilde{\sigma}} \)

\[
S_{h,\sigma,\tilde{\sigma}}(z_\sigma) = \frac{1}{(2\pi)^n} \int \mathbb{R}^n e^{iz_{\sigma} \zeta_\sigma} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_\sigma)/J^2(\zeta_\sigma) d\xi;
\]
Structural theorems for families of Fourier hyperfunctions

\[|S_{h,\sigma,\tilde{\sigma}}(z_\sigma)| \leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-x_\sigma \eta - y_\sigma \xi} |\mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}})| J^2(\zeta_{\tilde{\sigma}}) d\xi, h \in H. \]

One can see that \(S_{h,\sigma,\tilde{\sigma}}(z_\sigma), h \in H, \) are continuables to the real axis. The obtained functions \(S_{h,\sigma,\tilde{\sigma}}(x) \) are continuous and of infra exponential type on \(\mathbb{R}^n. \) By Lemma 8.4.7 in [3], \(S_{h,\sigma,\tilde{\sigma}}(x) \cong S_{h,\sigma,\tilde{\sigma}}(x + i\Gamma_\sigma 0), \tilde{\sigma} \in \Lambda, h \in H \) and

\[(f_h * g)(x) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} S_{h,\sigma,\tilde{\sigma}}(x), h \in H. \] \((6) \)

The functions \(S_{h,\sigma,\tilde{\sigma}}(z_\sigma) \) can be written in the following form

\[S_{h,\sigma,\tilde{\sigma}}(z_\sigma) = \frac{1}{(2\pi)^n} \sum_{s \in \Lambda} \int_{\mathbb{R}^n} e^{iz_\sigma \zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}}) \chi_s(\zeta_{\tilde{\sigma}}) J^2(\zeta_{\tilde{\sigma}}) d\xi, h \in H. \]

Denote by

\[S_{h,\sigma,\tilde{\sigma},s}(z_\sigma) = \frac{1}{(2\pi)^n} \sum_{s \in \Lambda} \int_{\mathbb{R}^n} e^{iz_\sigma \zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}}) \chi_s(\zeta_{\tilde{\sigma}}) J^2(\zeta_{\tilde{\sigma}}) d\xi, h \in H. \]

Functions \(S_{h,\sigma,\tilde{\sigma},s}(z_\sigma), \sigma, \tilde{\sigma}, s \in \Lambda, h \in H, \) are also continuables to the real axis and the obtained functions \(S_{h,\sigma,\tilde{\sigma},s}(x) \) are continuous and of infra exponential type on \(\mathbb{R}^n. \) Moreover, for every \(h \in H \)

\[S_{h,\sigma,\tilde{\sigma},s}(x) \cong S_{h,\sigma,\tilde{\sigma},s}(x + i\Gamma_\sigma 0) \quad \text{and} \quad S_{h,\sigma,\tilde{\sigma}}(x) = \sum_{s \in \Lambda} S_{h,\sigma,\tilde{\sigma},s}(x). \] \((7) \)

Let us analyse the functions

\[I_{s,\epsilon}(\zeta) = J^{-2}(\zeta) e^{-\epsilon s \zeta} \chi_s(\zeta), \zeta \in \mathbb{R}^n + i\{|\eta| < 1\}, \]

where \(0 < \epsilon < 1. \) These functions are elements of \(P_* \) because of

\[|I_{s,\epsilon}(\zeta)| = |J^{-2}(\zeta)| \exp(-\epsilon \sum_{i=1}^n s_i \xi_i) \prod_{i=1}^n |\chi_{s_i}(\xi_i)| \]

\[\leq |J^{-2}(\zeta)| \prod_{i=1}^n |\chi_{s_i}(\xi_i)| \exp(-\epsilon s_i \xi_i) \]

\[\leq C \exp(-\epsilon \sum_{i=1}^n |\xi_i|), \quad |\eta| < 1, \zeta = \xi + i\eta, s \in \Lambda. \]
Therefore, \(I_{s,\epsilon} \in \tilde{O}^{-\epsilon}(D^n + i\{|\eta| < 1\}) \), \(s \in \Lambda \). Since the Fourier transform maps \(P_* \) onto \(P_* \), there exists \(\psi_{s,\epsilon} \in P_* \) such that \(\mathcal{F}(\psi_{s,\epsilon}) = I_{s,\epsilon} \), \(s \in \Lambda \). By Proposition 8.2.2 in [3],

\[
\psi_{s,\epsilon} \in \tilde{O}^{-1}(D^n + i\{|\eta| < \epsilon\}), \ s \in \Lambda. \tag{8}
\]

Denote by

\[
q_{h,s}(x) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} S_{h,\sigma,\tilde{\sigma},s}(x)
\]

\[
\cong \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \mathcal{F}^{-1}(\mathcal{F}(F_{h,\sigma} \chi_{\tilde{\sigma}})J^{-2}\chi_s)(x + i(\Gamma_\sigma \cup \Gamma_s)0), s \in \Lambda, h \in H. \tag{9}
\]

Let us prove that the functions \(q_{h,s}, s \in \Lambda, h \in H \) have properties 1. - 4. cited in Theorem.

Property 1 follows from (9) and (c). Property 2 is satisfied because of (6) and (7). Property 3 follows by (5), (6) and (9). It remains only the property 4. Let us prove it.

If \(f_h \in Q(D^n), h \in H \), and \(\varphi \in P_* \), then, because of the supposition on \(F_{h}^\prime, h \in H, f_h \ast \varphi \in \tilde{O}(D^n + iI') \) (cf. [10]), where \(I' \) is an interval containing zero. We shall use this fact and the properties of the functions \(I_{s,\epsilon} \), we analysed.

For a fixed \(s \in \Lambda \) and \(h \in H \) there exists \(\epsilon_0 > 0 \), such that \(\epsilon s \) belongs to all infinitesimal wedges of the form \(R^n + i(\Gamma_\sigma \cup \Gamma_s)0 \) which appear in (9). For \(\epsilon, \ 0 < \epsilon \leq \epsilon_0 \) we have

\[
q_{h,s}(x + i\epsilon s) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \frac{1}{(2\pi)^n} \int_{R^n} e^{ix + i\epsilon s} \mathcal{F}(F_{h,\sigma} \chi_{\tilde{\sigma}})(\zeta_{\tilde{\sigma}})J^{-2}(\zeta_{\tilde{\sigma}})\chi_s(\zeta_{\tilde{\sigma}})d\xi
\]

\[
= \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \int_{R^n} e^{ix} \mathcal{F}(F_{h,\sigma} \chi_{\tilde{\sigma}})(\zeta_{\tilde{\sigma}})\mathcal{F}(\psi_{s,\epsilon})(\zeta_{\tilde{\sigma}})d\xi \tag{10}
\]

\[
= \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} (F_{h,\sigma} \chi_{\tilde{\sigma}}) * \psi_{s,\epsilon}(x) = ((F_{h,\sigma}) * \psi_{s,\epsilon})(x)
\]

\[
= (f_h * \psi_{s,\epsilon})(x) = \langle f_h(t), \psi_{s,\epsilon}(x - t) \rangle, \ s \in \Lambda, h \in H
\]

Now, 4. a) and 4. b) follows from (10).
REFERENCES

Institute of Mathematics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Yugoslavia