Research Article
Asymptotics of Time Harmonic Solutions to a Thin Ferroelectric Model

Naïma Aïssa and Kamel Hamdache

Received 19 April 2005; Revised 31 January 2007; Accepted 1 February 2007

Recommended by Nicholas Dimitrios Alikakos

We introduce new model equations to describe the dynamics of the electric polarization in a ferroelectric material. We consider a thin cylinder representing the material with thickness ε and discuss the asymptotic behavior of the time harmonic solutions to the model when ε tends to 0. We obtain a reduced model settled in the cross-section of the cylinder describing the dynamics of the plane components of the polarization and electric fields.

Copyright © 2007 N. Aïssa and K. Hamdache. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this work, we are interested in the model equations of ferroelectric materials introduced in [1] and discussed in [1–3] for example. We consider time harmonic solutions to the model as studied in [4]. We first rewrite the equations of the model given in [1] to precise the boundary conditions we will use. Let (E, H) be the electromagnetic field acting on the ferroelectric material Ω, which is a bounded and a regular domain of \mathbb{R}^3. Let P be the electric polarization induced in Ω. The electric displacement is then given by $D = \varepsilon (E + P)$ where $\varepsilon > 0$ is the electric permittivity of the vacuum. The Maxwell equations satisfied by the electromagnetic field are

\[
\begin{align*}
\mu \partial_t H - \text{curl } E &= 0, \\
\varepsilon \partial_t (E + P) + \text{curl } H + \sigma E &= 0,
\end{align*}
\]

where $\mu > 0$ is the magnetic permeability of the vacuum and $\sigma > 0$ is the conductivity constant of the ferroelectric material. The behavior of the electric polarization P is driven
by the nonlinear Maxwell equation

\[\partial_t^2 P + \lambda^2 \text{curl}^2 P + a \partial_t P = -b (E_{eq}(P) - E), \]

(1.2)

where \(\text{curl}^2 P = \text{curl}(\text{curl} P) \), \(E_{eq}(P) \) is the nonlinear equilibrium electric field which will be given later, and \(\lambda^2 = 1/\epsilon \mu \). The parameters \(a \) and \(b \) are some physical positive constants. This model is obtained as follow (see [1]). Denoting by \(m \) the internal magnetization and by \(j \) the current density which is driven by the difference between the equilibrium field \(E_{eq}(P) \) and the electric field \(E \), then with the internal polarization field \(P \) they satisfy the set of equations

\[\epsilon (\partial_t P + \delta^{-1} j) = \text{curl} m, \]
\[\mu (\partial_t m + a \delta^{-1} m) = -\text{curl} P, \]
\[(\partial_t j + a \delta^{-1} j) = \beta \delta^{-1} (E_{eq}(P) - E) \]

(1.3)

which reduces to the nonlinear Maxwell equation (1.2) satisfied by \(P \). The internal magnetization \(m \) satisfies the boundary condition \(m \times n = 0 \), then the second equation of (1.3) implies that \(P \) satisfies

\[\text{curl} P \times n = 0 \quad \text{on} \quad \partial \Omega. \]

(1.4)

In this work, we consider, on \(\partial \Omega \), Leontovitch-type boundary conditions for \(E \) extending the one used in [1], that is,

\[H \times n + \beta n \times (E \times n) = 0, \quad \text{curl} P \times n = 0, \]

(1.5)

where \(\beta \) is some nonnegative function defined on \(\partial \Omega \) and \(n \) is the unit outward normal to \(\partial \Omega \).

The equilibrium field is assumed to be the gradient of a potential function \(\phi(|P|^2) \). We have \(E_{eq}(P) = 2P \phi'(|P|^2) \) where \(\phi : \mathbb{R}^+ \to \mathbb{R} \) is a \(C^2 \) convex function satisfying the hypotheses given in [1], more precisely, we assume that there exist \(0 < r_1 < r_0 \) and \(C_2 > 0 \) such that

\[\phi(0) = \phi(r_0) = 0, \quad \phi'(r_1) = 0, \quad \phi'(0) < 0, \]
\[(s \phi'(s^2))' \leq C_2 \quad \forall s \geq 0. \]

(1.6)

Hence, for all \(s \geq R > r_1 \), there exists \(C_R > 0 \) such that \(\phi'(s) \geq C_R \) and for all \(s \geq 0 \)

\[|\phi'(s)| \leq C_*, \quad 0 \leq s^2 \phi''(s^2) \leq C_*, \]

(1.7)

where \(C_* = \max(|\phi'(0)|, C_2) \). Examples of such potentials defined on \(\mathbb{R}^+ \) satisfying the hypotheses are the following: \(\phi_1(s) = b(1 + s^2)^{1/2} - as - 1 \) with \(0 < a < b, 0 < b < 1 \), \(\phi_2(s) = s/2 - \log(1 + s) \), \(\phi_3(s) = as + 1 - (1 + s)^a \) with \(a > 0 \) and \(a < \alpha < 1 \).
With these hypotheses, the vector-valued function $E_{\text{eq}}(P) = 2P\phi'(|P|^2)$ satisfies the estimate

$$|E_{\text{eq}}(P) - E_{\text{eq}}(Q)| \leq C_* |P - Q|$$

for all $P, Q \in \mathbb{R}^3$.

Let us mention other interesting models for ferroelectric materials, see [5–7] for example. In the first two papers, the authors consider deformable ferroelectric materials and give the evolution equation for the spontaneous polarization. The model obtained is different from the one given in [1], since it includes the deformation of the bodies. In the second one, a theoretical model is proposed explaining the lamellar morphology of domains of opposite polarization observed in ferroelectric crystals in their polar phases. The jump conditions for the electric field and polarization vector across domain walls play an important role in the characterization of the free energy. Many interesting mathematical problems, as the dimension reduction of domains, are contained in both papers.

In this paper, we are dealing with time harmonic solutions to the model (1.1)-(1.2). We write $H(t, x) = e^{it}H(x), E(t, x) = e^{i\omega t}E(x), P(t, x) = e^{i\omega t}P(x),$ and $F(t, x) = e^{i\omega t}F(x)$ with $\omega > 0$ fixed. The new complex field (E, P) satisfies the set of equations

$$(\zeta_1(\omega) + \lambda^2 \text{curl}^2)E = \omega^2 P + i\omega F$$

$$(\zeta_2(\omega) + \lambda^2 \text{curl}^2)P = -b(2P\phi'(|P|^2) - E),$$

where $\zeta_1(\omega) = -\omega^2 + ia_1, \zeta_2(\omega) = -\omega^2 + i\omega a_2$ with $a_1 = \sigma/\epsilon$ and $a_2 = a$. The magnetic field H is recovered from the electric field E by the formula $H = \text{curl}E/i\omega\mu$. The boundary conditions on $\partial\Omega$ write

$$\text{curl}E \times n + i\omega \mu \beta n \times (E \times n) = 0, \quad \text{curl}P \times n = 0.$$
on $\Gamma = \partial \Omega$ as follows: (see [10, page 75]) $U = (U \cdot n)n + U_T$, $U_T = n \times (U \times n)$. Thus, U satisfies the equivalent boundary condition on Γ (see [10, page 77]),

$$\frac{\partial U_T}{\partial n} + \mathcal{R}(U_T) = 0, \quad U \cdot n = 0,$$

(1.11)

where \mathcal{R} is the symmetric curvature operator acting in the tangent plane.

In what follows, we are interested only in the regular part U of the polarization field P and assume that the potential ϕ is constant in $\overline{\Omega}$. Hence, we have $P = U$, then

$$\text{div} \, P = 0 \quad \text{in} \, \Omega, \quad P \cdot n = 0 \quad \text{on} \, \partial \Omega.$$

Next, we assume that the source term F satisfies in Ω the condition

$$\text{div} \, F = 0.$$

(1.12)

By considering the equation satisfied by E in (1.9), we deduce the compatibility condition $\zeta_1(\omega) \text{div} E - \omega^2 \text{div} P = 0$ which implies $\text{div} \, E = 0$. Hence, under the divergence free condition for P, (1.9) shows that (E, P) satisfies in Ω the new problem

$$\begin{align*}
(\zeta_1(\omega) + \lambda^2 \text{curl}^2)E - \omega^2 P &= \omega F, \\
(\zeta_2(\omega) - \lambda^2 \Delta)P + \nabla \pi &= -b(E_{eq}(P) - E),
\end{align*}$$

$$\text{div} \, P = 0,$$

(1.14)

$$\begin{align*}
\text{curl} E \times n + i\omega \mu \beta n \times (E \times n) &= 0, \\
\text{curl} P \times n &= 0, \quad P \cdot n = 0 \quad \text{on} \, \partial \Omega,
\end{align*}$$

where π is the Lagrange multiplier associated with the constraint $\text{div} \, P = 0$ and where we used the relation $-\Delta = \text{curl}^2 + \nabla \text{div}$. Combining the condition $\text{div} \, P = 0$ with the compatibility condition $\text{div} \, E = 0$ and using the second equation of (1.14), we see that the equilibrium electric field should satisfy the condition $\text{div} \, E_{eq}(P) = \phi^{(2)}(|P|^2)P \cdot \nabla (|P|^2)$.

In the remainder of the paper, we assume that the ferroelectric domain is the cylinder $\Omega^\varepsilon = \Omega_T \times (0, \varepsilon)$ with thickness $\varepsilon > 0$ and the cross-section Ω_T which is an open, bounded, and regular set of \mathbb{R}^2. The generic point of Ω^ε is denoted by $x = (x_T, x_3)$ where $x_T = (x_1, x_2) \in \Omega_T$ and $0 \leq x_3 \leq \varepsilon$. We also assume that the function β appearing in the boundary condition satisfied by the electric field E depends on ε and is given by

$$\beta^\varepsilon(x_3) = \beta \quad \text{on} \, \partial \Omega_T \times (0, \varepsilon), \quad \beta^\varepsilon(0) = \varepsilon \beta_0, \quad \beta^\varepsilon(\varepsilon) = \varepsilon \beta_1 \quad \text{in} \, \Omega_T,$$

(1.15)

where β, β_k are positive constants. The boundary $\partial \Omega^\varepsilon$ writes as $(\Omega_T \times \{x_3 = 0\}) \cup (\Omega_T \times \{x_3 = \varepsilon\}) \cup (\partial \Omega_T \times (0, \varepsilon))$. We denote by $(E_\varepsilon, P_\varepsilon)$ the solutions satisfying (1.14) in Ω^ε.

Let us set some notations. We define the norm of the complex Lebesgue space $L^2(\Omega^\varepsilon)$ by setting $|F|^2 = (1/\varepsilon) \int_0^\varepsilon \int_{\Omega_T} |F(x_T, x_3)|^2 dx_T dx_3$ and its scalar product by $(F; G) = (1/\varepsilon) \int_0^\varepsilon \int_{\Omega_T} F \cdot G^* dx_T dx_3$ where G^* stands for the complex conjugate of G. We use the same notations for the Lebesgue space $L^2(\partial \Omega_T \times (0, \varepsilon))$. If $\Omega = \Omega_T \times (0, 1)$, we write $| \cdot |$ for the norm of $L^2(\Omega)$ and (\cdot, \cdot) for its scalar product. We denote by (u_1, u_2, u_3) the canonical basis of \mathbb{R}^3.

The paper is organized as follows. In Section 2, we prove uniform bounds for the solution of the model equations (1.14). In Section 3, we then introduce a change of variable with respect to the vertical variable to transform the thin domain Ωε to the cylinder Ω with thickness 1. We deduce the uniform bounds for the scaled solutions satisfying the model equations (3.5). In Section 4, we pass to the limit in the weak formulation of (3.5) and deduce the reduced model. The last section is devoted to some remarks.

2. Uniform bounds

Since Eeq is a Lipschitz perturbation of order 0 of the operator (curl², curl²), then existence and uniqueness of the solution (Eε, Pε) of problem (1.14) can be obtained by introducing, in the Hilbert space \(\mathcal{H} = L²(Ω²) \times L²(Ω²) \), the unbounded operator \(\mathcal{A} \) with domain \(D(\mathcal{A}) = \{(E,P) \in \mathcal{H}, (\text{curl}²E,\text{curl}²P) \in \mathcal{H}, \text{div} P = 0 \text{ in } Ω², \text{curl}E \times n + \omega \mu \beta n \times (E \times n) = 0, \text{curl}P \times n = 0, P \cdot n = 0 \text{ on } \partial Ω² \} \) with \(\mathcal{A}(E,P) = (\text{curl}²E,\text{curl}²P) \) for \((E,P) \in D(\mathcal{A}) \). Problem (1.14) writes as \((\mathcal{B}(\omega) + \lambda²\mathcal{A})(E,P) = \omega \mathcal{F} + b\mathcal{G}(E,P) \) where \(\mathcal{B}(\omega) \) is the diagonal block matrix with diagonal \(\zeta₁(\omega)I \) and \(\zeta₂(\omega)I \), \(\mathcal{G}(E,P) = (0,Eeq(P) - E) \), and \(\mathcal{F} = (F,0) \). We use classical results (e.g., see [11–13]) to prove existence and uniqueness of the solution for \(\omega > 0 \) fixed.

In order to obtain uniform estimates, we multiply the first equation of (1.14) by \(Eε^* \) and the second one by \(Pε^* \) and use the Green formula

\[
-(\Delta Pε;Pε)_ε = |∇Pε|^²_ε + \int_{Γε} \mathcal{R}(PΤ;ε) \cdot Pε^* dσ. \tag{2.1}
\]

We get (notice that \((\nabla πε, Pε)_ε = 0 \))

\[
\zeta₁(\omega)|Eε|^²_ε + \lambda² |\text{curl} Eε|^²_ε + \omega \lambda² |Pε|^²_ε + \mu \zeta₁(\omega) \int_{\partial Ω²} βε |Eε \times n|^² dσ = \omega²(Pε;Eε)_ε + \omega(F;Eε)_ε,
\]

\[
\zeta₂(\omega)|Pε|^²_ε + \lambda² |\nabla Pε|^²_ε + \lambda² \int_{\partial Ω²} \mathcal{R}(PΤ;ε) \cdot Pε^* dσ + b \int_{Ωε} |Pε|^² \phi'(|Pε|^²) dx = b(Eε;Pε)_ε. \tag{2.2}
\]

The real parts of each equation write as

\[
-\omega² |Eε|^²_ε + \lambda² |\text{curl} Eε|^²_ε = \omega²\mathcal{R}(Pε;Eε)_ε + \mathcal{R}(\omega(F;Eε)_ε),
\]

\[
-\omega² |Pε|^²_ε + \lambda² |\nabla Pε|^²_ε + \int_{\partial Ω²} \mathcal{R}(PΤ;ε) \cdot Pε^* dσ + b \int_{Ωε} |Pε|^² \phi'(|Pε|^²) dx = b\mathcal{R}(Eε;Pε)_ε \tag{2.3}
\]

and the imaginary parts give

\[
\omega a_1 |Eε|^²_ε + \omega \lambda² \int_{\partial Ω²} βε |Eε \times n|^² dσ = \omega²\mathcal{I}(Pε;Eε)_ε + \mathcal{I}(\omega(F;Eε)_ε),
\]

\[
\omega a_2 |Pε|^²_ε = b\mathcal{I}(Eε;Pε)_ε. \tag{2.4}
\]
Adding the last equalities and using the property $\mathcal{S}(P_\epsilon;E_\epsilon_\epsilon) + \mathcal{S}(E_\epsilon;P_\epsilon) = 0$, we get

$$a_1 b |E_\epsilon|^2 + b \omega \mu \lambda^2 \int_\partial \Omega^c \beta^2 |E_\epsilon \times n|^2 d\sigma + a_2 \omega^3 |P_\epsilon|^2 = \mathcal{S}(wb(F;E_\epsilon)) \quad (2.5)$$

Using the fact that \mathcal{R} is independent of ϵ, then there exists $c > 0$ which is independent of ϵ such that $|\int_\partial \mathcal{R}(P_\epsilon,\epsilon) \cdot P_\epsilon^T d\sigma| \leq c_\eta |\nabla P_\epsilon|_{\epsilon}^2 = c_\eta \eta |\nabla P_\epsilon|_{\epsilon}^2$ for all $\eta > 0$. We obtain, for η small enough, the following result.

Lemma 2.1. There exists $C > 0$ which is independent of ϵ (depending on ω and F) such that

$$|E_\epsilon|_{\epsilon} + |\text{curl} E_\epsilon|_{\epsilon} + |\sqrt{\beta^2} E_\epsilon \times n|_{\epsilon} \leq C,$$

$$|P_\epsilon|_{\epsilon} + |\nabla P_\epsilon|_{\epsilon} + |\pi^\epsilon|_{\epsilon} \leq C.$$

Moreover,

$$|\Delta P_\epsilon|_{\epsilon} + |\text{curl}^2 E_\epsilon|_{\epsilon} \leq C. \quad (2.7)$$

3. The scaled problem and convergences

We introduce the change of variable $z = x_3/\epsilon$ for $x_T \in \Omega_T$ fixed. We define the cylinder $\Omega = \Omega_T \times (0,1)$ with generic point (x_T, z). For a given vector-valued function $G(x_T, x_3)$ defined on Ω^ϵ we set $G^\epsilon(x_T, x_3) = G(x_T, \epsilon z)$ which is defined in Ω. We write $G^\epsilon = (G^\epsilon_1, G^\epsilon_2)$ where $G^\epsilon = (G_1^\epsilon, G_2^\epsilon)$ and $g^\epsilon = G^\epsilon_3$. Denoting ∇_T the gradient with respect to the variable x_T we have $\nabla_T G^\epsilon = \nabla_T G^\epsilon$ and $\partial_{x_3} G = (1/\epsilon) \partial_3 G^\epsilon$. Let g be a scalar function and let $G_T = (G_1, G_2)$ be a vector-valued function both defined in Ω. We set

$$\text{curl}_T g = (\partial_2 g, -\partial_1 g), \quad \Delta_T G = \partial_1^2 G + \partial_2^2 G,$$

$$\text{Curl} G_T = \partial_1 G_2 - \partial_2 G_1, \quad \text{div}_T G_T = \partial_1 G_1 + \partial_2 G_2. \quad (3.1)$$

With the change of variable, we have $(1/\epsilon) \int_0^1 |G(x_3)|^2 dx_3 = \int_0^1 |G^\epsilon(z)|^2 dz$ and the differential operators become $\text{curl} G = \text{curl}_\epsilon G^\epsilon$, $\text{div} G = \text{div}_\epsilon G^\epsilon$, $\Delta G = \Delta_\epsilon G^\epsilon$ with

$$\text{curl}_\epsilon G^\epsilon = -\frac{1}{\epsilon} \partial_\epsilon (G^\epsilon \times u_3) + \text{curl}_T G^\epsilon + (\text{Curl}_T G^\epsilon_3) u_3,$$

$$\text{div}_\epsilon G^\epsilon = \text{div}_T G^\epsilon + \frac{1}{\epsilon} \partial_\epsilon G^\epsilon,$$

$$\Delta_\epsilon G^\epsilon = \Delta_T G^\epsilon + \frac{1}{\epsilon^2} \partial_\epsilon^2 G^\epsilon, \quad \nabla_\epsilon g^\epsilon = \left(\nabla x_T g^\epsilon + \frac{1}{\epsilon} \partial_\epsilon g^\epsilon \right). \quad (3.2)$$

We rewrite $\text{curl}_\epsilon G^\epsilon$ as follows:

$$\text{curl}_\epsilon G^\epsilon = (\theta^\epsilon, \text{Curl}_T G^\epsilon_3), \quad \theta^\epsilon = \left(\partial_2 g^\epsilon - \frac{1}{\epsilon} \partial_\epsilon G^\epsilon_3, \frac{1}{\epsilon} \partial_3 G^\epsilon_3 - \partial_1 g^\epsilon \right). \quad (3.3)$$

Notice that $\theta^\epsilon \cdot u_3 = 0$ a.e. Here we have identified the 2D vectors θ^ϵ and $\text{Curl}_T g^\epsilon$ with the vectors $(\theta^\epsilon, 0)$ of \mathbb{R}^3 and $(\partial_2 g^\epsilon, -\partial_1 g^\epsilon, 0)$, respectively. This identification will be used throughout this manuscript.
Let \((E_\varepsilon, P_\varepsilon)\) be a solution to problem (1.14) associated with the source term \(F\) satisfying the hypothesis

\[
F = (F_T(x_T), 0), \quad \text{div}_T F_T = 0. \tag{3.4}
\]

Using the previous notations, let \(E^\varepsilon = (E_T^\varepsilon, e^\varepsilon)\) and \(P^\varepsilon = (P_T^\varepsilon, p^\varepsilon)\) be the scaled solution to (1.14) and let \(\Pi^\varepsilon\) be the scaled function associated with \(\pi^\varepsilon\). Then \((E^\varepsilon, P^\varepsilon)\) satisfies in \(\Omega\) the system of equations

\[
\begin{align*}
(\zeta_1(\omega) + \lambda^2 \text{curl}_T^2)E^\varepsilon &= \omega^2 P^\varepsilon + \text{i}\omega F(x_T), \\
(\zeta_2(\omega) - \lambda^2 \Delta_\varepsilon)P^\varepsilon + \nabla_\varepsilon \Pi^\varepsilon &= -b(E_{eq}(P^\varepsilon) - E^\varepsilon), \\
\text{div}_T P^\varepsilon &= 0, \\
\text{curl}_T E^\varepsilon \times n + \text{i}\omega \mu \beta^\varepsilon n \times (E^\varepsilon \times n) &= 0 \quad \text{on} \partial\Omega, \\
\text{curl}_T P^\varepsilon \times n &= 0, \quad P^\varepsilon \cdot n = 0 \quad \text{on} \partial\Omega,
\end{align*}
\tag{3.5}
\]

where \(n = (n_T, n_3)\) is the unit outward normal to \(\Omega\). We have \(n = u_3\) for \(z = 1\), \(n = -u_3\) for \(z = 0\), and \(n = n_T = (n_1, n_2)\) on \(\partial\Omega_T\) for \(0 \leq z \leq 1\).

Let \(\theta^\varepsilon\) be the 2D vector appearing in the definition of \(\text{curl}_T E^\varepsilon\). We have

\[
\theta^\varepsilon = \left(\frac{\partial_2 e^\varepsilon}{\varepsilon} - \frac{1}{\varepsilon} \partial_2 E_2^\varepsilon, \frac{1}{\varepsilon} \partial_z E_1^\varepsilon - \partial_1 e^\varepsilon \right).
\tag{3.6}
\]

The boundary conditions satisfied by \((E^\varepsilon, P^\varepsilon)\) are rewritten as follows. On \(z = 0\) and \(z = 1\), we have

\[
\begin{align*}
(\theta^\varepsilon \times u_3)(x_T, 1) &= -\text{i}\omega \mu \beta_1 \varepsilon E^\varepsilon(x_T, 1), \quad (\theta^\varepsilon \times u_3)(x_T, 1) = \text{i}\omega \mu \beta_0 \varepsilon E^\varepsilon(x_T, 0), \\
p^\varepsilon(x_T, 1) &= p^\varepsilon(x_T, 0) = 0, \\
\partial_z P_T^\varepsilon(x_T, 1) + \varepsilon \mathcal{R}(P_T^\varepsilon(x_T, 1)) &= -\partial_z P_T^\varepsilon(x_T, 0) + \varepsilon \mathcal{R}(P_T^\varepsilon(x_T, 0)) = 0,
\end{align*}
\tag{3.7}
\]

and on \(\partial\Omega_T \times (0, 1)\), we have

\[
\text{Curl}_T E_T^\varepsilon = \text{i}\omega \beta E^\varepsilon \times n_T, \quad \text{Curl}_T P_T^\varepsilon = 0, \\
\frac{\partial P_T^\varepsilon}{\partial n_T} + \mathcal{R}(P_T^\varepsilon) = 0, \quad P_T^\varepsilon \cdot n_T = 0,
\tag{3.8}
\]

where \(E_T^\varepsilon \times n_T = E_T^\varepsilon n_2 - E_T^\varepsilon n_1\). Recall that \(P_T^\varepsilon = n_T \times (P^\varepsilon \times n_T)\). Applying the uniform bounds of Lemma 2.1 to the scaled solution \((E^\varepsilon, P^\varepsilon)\) and using (3.7), we get the following.

Lemma 3.1. There exists \(C > 0\) which is independent of \(\varepsilon\) such that

\[
\begin{align*}
|E^\varepsilon| + |P^\varepsilon| + |\Pi^\varepsilon| & \leq C, \\
|\theta^\varepsilon| + |\text{Curl}_T E_T^\varepsilon| + |\nabla_T P^\varepsilon| + \frac{1}{\varepsilon} |\partial_z P^\varepsilon| & \leq C, \\
|\text{curl}_T^2 E^\varepsilon| + |\Delta_\varepsilon P^\varepsilon| & \leq C.
\end{align*}
\tag{3.9}
\]
Moreover, the traces of the solution satisfy the estimates

\[
\left| \mathbf{E}^\varepsilon_{|z=k} \right| \leq C, \quad \left| \theta^\varepsilon_{|z=k} \right| \leq C\varepsilon, \quad \text{for } k = 1, 2, \\
\left| \mathbf{E}^\varepsilon \times n_{|\partial \Omega_T \times (0,1)} \right| \leq C.
\]

(3.10)

We will prove the following general result which is useful in the sequel.

Proposition 3.2. Let \(\mathbf{U}^\varepsilon = (U^\varepsilon_T, u^\varepsilon) \) be a bounded sequence of \(L^2(\Omega) \) such that \(\text{curl}_\varepsilon \mathbf{U}^\varepsilon = (\theta^\varepsilon, \text{Curl}_T U^\varepsilon_T) \) is bounded in \(L^2(\Omega) \) and assume that the tangential trace \(\mathbf{U}^\varepsilon \times n \) is uniformly bounded in \(L^2(\partial \Omega) \). Then, there exists a subsequence, still denoted, \(\mathbf{U}^\varepsilon \) such that \(\mathbf{U}^\varepsilon \) converges weakly in \(L^2(\Omega) \), \(\text{Curl}_T U^\varepsilon_T \) weakly in \(L^2(\Omega) \). Moreover, \(U_T \) is independent of \(z \) and

\[
(U^\varepsilon_T \times u^\varepsilon_j)_{|z=k} \rightharpoonup U_T \times u_j \quad \text{weakly in } L^2(\Omega_T) \text{ for } k = 0, 1,
\]

\[
\int_0^1 U^\varepsilon_T \times n_T dz \rightharpoonup U_T \times n_T \quad \text{weakly in } L^2(\partial \Omega_T).
\]

(3.11)

Proof. Let \(\mathbf{U} = (U_T, u) \) be the weak limit in \(L^2(\Omega) \) of a subsequence of \(\mathbf{U}^\varepsilon \). Let \(\varphi \in \mathcal{D}(\overline{\Omega}) \) be a test function. The Green formula gives

\[
\int_\Omega \text{curl}_\varepsilon \mathbf{U}^\varepsilon \cdot \varphi dx = \int_\Omega \mathbf{U}^\varepsilon \cdot \text{curl}_\varepsilon \varphi dx - \int_{\partial \Omega_T \times (0,1)} \mathbf{U}^\varepsilon \times n \cdot \varphi d\sigma \\
- \frac{1}{\varepsilon} \int_{\Omega_T} (\mathbf{U}^\varepsilon \times u^\varepsilon)_{|z=1} \cdot \varphi_{|z=1} dx_T + \frac{1}{\varepsilon} \int_{\Omega_T} (\mathbf{U}^\varepsilon \times u^\varepsilon)_{|z=0} \cdot \varphi_{|z=0} dx_T.
\]

(3.12)

Firstly, we choose in the Green formula \(\varphi = \varepsilon \phi \) with \(\phi = (\phi_1, \phi_2, 0) = (\phi_T, 0) \in \mathcal{D}(\Omega) \). Since \(\text{curl}_\varepsilon \varphi = -\partial_z(\mathbf{u} \times u^\varepsilon_3) + \varepsilon(\text{Curl}_T \phi_T)u_3 \), then passing to the limit in (3.12), we get

\[
\int_\Omega -U_1 \partial_z \phi_2 + U_2 \partial_z \phi_1 dx = 0
\]

(3.13)

which implies that \(\partial_z U_T = 0 \) in the sense of distributions so, \(U_T \) is independent of the variable \(z \). Next, let \(A_j \) be the weak limit in \(L^2(\Omega_T) \) of a subsequence of the traces \((\mathbf{U}^\varepsilon \times u^\varepsilon_3)_{|z=j} \) for \(j = 0, 1 \). To identify \(A_1 \), we choose in the Green formula \(\varphi = \varepsilon z \phi \) with \(\phi = (\phi_1(x_T), \phi_2(x_T), 0) \in (\mathcal{D}(\Omega_T))^3 \). Passing to the limit in (3.12), we get

\[
\int_{\Omega_T} -U_1 \phi_2 + U_2 \phi_1 dx - \int_{\Omega_T} A_1 \cdot \phi dx_T = 0
\]

(3.14)
which shows that \(A_1 = U_T \times u_3 \). Secondly, we use the test function \(\varphi = \epsilon(1 - z)\phi \) with \(\phi = (\phi_1(x_T), \phi_2(x_T), 0) \in (\mathcal{D}(\Omega_T))^2 \) in the Green formula (3.12) and pass to the limit, we get

\[
\int_{\Omega_T} U_1\phi_2 - U_2\phi_1\,dx + \int_{\Omega_T} A_0 \cdot \phi\,dx_T = 0. \tag{3.15}
\]

Thus, we get \(A_0 = U_T \times u_3 \) and \(A_0 = A_1 \).

Finally, let \(g \) be the weak limit in \(L^2(\partial\Omega_T \times (0,1)) \) of a subsequence of the traces \(U_\epsilon \times n_T|_{\Omega_T} \). To characterize \(g \), we consider the test function \(\phi = (0,0,\phi_3(x_T)) \) with \(\phi_3 \in H^5(\Omega_T) \). Observing that \(\text{curl}_\epsilon \phi = \text{curl}_T \phi_3 = (\partial_2 \phi_3, -\partial_1 \phi_3, 0) \) and passing to the limit in (3.12), since \(U \) is independent of the variable \(z \), we deduce that

\[
\int_{\Omega_T} \phi_3 \text{Curl}_T U_\epsilon \,dx_T = \int_{\Omega_T} U_T \cdot \text{curl}_T \phi_3 \,dx_T - \int_{\partial\Omega_T} \left(\int_0^1 g\,dz \right) \phi_3 \,dx_T. \tag{3.16}
\]

Now, since \(\text{Curl}_T U_\epsilon \in L^2(\Omega_T) \), then \(U_T \times n_T \) is well defined, we finally deduce that

\[
\int_0^1 g\,dz = U_T \times n_T.
\]

Hence, Proposition 3.2 is proved.

Applying Proposition 3.2 to the fields \(E_\epsilon = (E_\epsilon^T, e_\epsilon) \) and curl\(_\epsilon\) \(E_\epsilon = (\theta_\epsilon, \text{Curl}_T E_\epsilon^T) \), we get the following.

Lemma 3.3. There exist subsequences, still denoted, \(E_\epsilon \) and \(\theta_\epsilon \) such that the following weak convergences in \(L^2(\Omega) \) hold:

\[
E_\epsilon^T \rightharpoonup E_T, \quad e_\epsilon \rightharpoonup e, \quad \text{Curl}_T E_\epsilon^T \rightharpoonup \text{Curl}_T E_T, \quad \theta_\epsilon \rightharpoonup 0, \tag{3.17}
\]

and \(E_T \) is independent of \(z \). Moreover, the traces satisfy the convergences

\[
E_{T|z=k}^\epsilon \rightharpoonup E_T \text{ weak,} \quad \theta_{|z=k}^\epsilon \rightharpoonup 0 \text{ strong}, \quad \int_0^1 E_T^T \times n_T\,dz \rightharpoonup E_T \times n_T \tag{3.18}
\]

in \(L^2(\Omega_T) \) for \(k = 1,2 \) and in \(L^2(\partial\Omega_T) \), respectively.

Proof. Lemma 3.1 implies the strong convergence of \(\theta_{|z=j}^\epsilon \) to 0. Next, set \(U^\epsilon = \text{curl}_\epsilon E^\epsilon \). As \(U^\epsilon = (\theta^\epsilon, \text{Curl}_T E^T_\epsilon) \) satisfies the conditions of the previous proposition, then \(\theta^\epsilon \rightharpoonup \theta \) weakly in \(L^2(\Omega) \) and \(\theta \) is independent of the variable \(z \). Using again Proposition 3.2, we get \((\theta^\epsilon \times u_3)_{|z=k} \rightharpoonup \theta \times u_3 \) weakly in \(L^2(\Omega_T) \) for \(k = 1,2 \). Since \((\theta^\epsilon \times u_3)_{|z=k} \rightharpoonup 0 \) strongly, then \(\theta \equiv 0 \) in \(\Omega \).

Now, we consider the convergences for \(P^\epsilon \). We have the following.
Lemma 3.4. There exists a subsequence, still denoted by P^e such that

$$
P^e \rightharpoonup P = (P_T, 0) \text{ strong, } \quad \nabla_T P^e \rightharpoonup \nabla_T (P_T, 0), \quad \Pi^e \rightharpoonup \Pi \text{ weak},
$$

\begin{equation}
\partial_z P^e \to 0, \quad E_{eq}(P^e) \rightharpoonup E_{eq}(P_T) = 2 P_T \phi'(|P_T|^2) \text{ strong}
\end{equation}

in $L^2(\Omega)$. Moreover, P_T and Π are independent of the variable z and $e = 0$. Finally, P_T satisfies on $\partial \Omega_T$ the boundary condition $P_T \cdot n_T = 0$.

Proof. Using the bounds in $L^2(\Omega)$ of $\nabla_e P^e$ and P^e, we deduce that there exists a subsequence such that $P^e \rightharpoonup P = (P_T, p)$ weakly in $H^1(\Omega)$. Moreover, $\partial_z P^e \to 0$ strongly in $L^2(\Omega)$. It follows that P is independent of z. Furthermore, the pressure Π^e converges weakly to Π in $L^2(\Omega)$. Next, the trace of P^e on $\partial \Omega$ converges weakly in $H^{1/2}(\partial \Omega)$ to the trace of P. Since we have $p^e(x_T, 1) = p^e(x_T, 0) = 0$ and p is independent of z, then $p = 0$. The trace $P^e \times n \to P \times n$ weakly in $L^2(\partial \Omega_T \times (0, 1))$. We may pass to the limit in the boundary condition to get $P \cdot n = 0$ on $\partial \Omega$ which gives $P_T \cdot n_T = 0$. We rewrite the Neumann boundary condition in its original form $\text{curl}_e P^e \times n = 0$. We write $\text{curl}_e P^e = (\theta_1^e, \text{Curl}_T P^e_T)$, where θ_1^e is defined as in Section 3, then the boundary condition becomes

$$
\theta_1^e(x_T, 1) = \theta_1^e(x_T, 0) = 0, \quad \theta_1^e \times n_T = 0, \quad \text{Curl}_T P^e_T = 0, \text{ on } \partial \Omega_T.
$$

We apply Proposition 3.2 to $U^e = \text{curl}_e P^e$. Since we have $\Delta_e P^e = \text{curl}_e(\text{curl}_e P^e)$ because we have $\text{div}_e P^e = 0$, then by Lemma 3.1, it follows that $\text{curl}_e U^e$ is bounded in $L^2(\Omega)$. Applying Proposition 3.2, we deduce that θ_1, the weak limit of θ_1^e, is independent of z where θ_1 is the weak limit of θ_1^e. Finally, using the boundary condition satisfied by θ_1^e at $z = 0$ and $z = 1$, we deduce that $\theta_1 = 0$. Next, we use the bound in $L^2(\Omega)$ of $\nabla_e P^e_T$ to deduce that $\text{Curl}_T P^e_T \to \text{Curl}_T P_T$ and $P^e_T \cdot n_T \to P_T \cdot n_T$ weakly in $H^{1/2}(\partial \Omega)$. To end the proof of the lemma, we will prove that Π is independent of z and $e = 0$. We set $\sigma^e = \partial_z ((1/\epsilon) \rho^e)$. The condition $\text{div}_e P^e = 0$ is rewritten as $\text{div}_T P^e_T + \sigma^e = 0$ and from the equation satisfied by P^e we deduce that $-\lambda^2 \partial_z \sigma^e + \partial_z \Pi^e = \epsilon R^e$ where the remainder term R^e is bounded in $L^2(\Omega)$. Since σ^e is bounded in $L^2(\Omega)$, then passing to the limit we get $\text{div} P_T + \sigma = 0$ and $-\lambda^2 \partial_z \sigma + \partial_z \Pi = 0$. Since P_T is independent of z, then so is σ which implies that $\partial_z \Pi = 0$. Let us consider the equation satisfied by F^e. We multiply the equation by the test function $\varphi = (0, 0, \psi)$ with $\psi \in \mathcal{D}(\Omega)$. Since we have $\text{curl}_e \varphi = (\partial_2 \psi, -\partial_1 \psi, 0)$, then $\text{curl}_e F^e \cdot \text{curl}_e \varphi = \theta^e \cdot \text{Curl}_T \psi$, then we get after an integration by parts (recall that the third component of F is 0)

$$
\int_\Omega (\zeta_1(\omega)e^\epsilon - \omega^2 p^e) \psi \, dx + \lambda^2 \int_\Omega \theta^e \cdot \text{Curl}_T \psi \, dx = 0.
$$

Passing to the limit, we obtain $\zeta_1(\omega)e - \omega^2 p = 0$. Using that $p = 0$, we get $e = 0$. □
4. The reduced problem

Let us introduce the Hilbert space \(H(\text{Curl}_T, \Omega_T) = \{ U \in L^2(\Omega_T)^2, \text{Curl}_T U \in L^2(\Omega_T) \} \). We will prove the following main result describing the dimensional reduction of the thin ferroelectric cylinder.

Theorem 4.1. Let \(F \in (L^2(\Omega_T))^2 \) be such that \(\text{div}_T F = 0 \) in \(\Omega_T \). Then for \(\omega > 0 \) fixed, there exists a unique solution \((E, P) \in H(\text{Curl}_T, \Omega_T) \times H(\text{Curl}_T, \Omega_T)\) of the reduced problem

\[
\zeta_1(\omega)E + \lambda^2 \text{curl}_T (\text{Curl}_T E) + \imath \omega \mu (\beta_1 + \beta_0) E - \omega^2 P = \imath \omega F,
\]

\[
\text{Curl}_T E + \imath \omega \mu \beta E \times n_T = 0, \quad \text{on } \partial \Omega_T,
\]

\[
\zeta_2(\omega)P - \lambda^2 \Delta P + \nabla_T \Pi = -b(E_{eq}(P) - E),
\]

\[
\text{div}_T P = 0,
\]

\[
\text{curl}_T P = 0, \quad P \cdot n_T = 0, \quad \text{on } \partial \Omega_T.
\]

Furthermore, \(\text{Curl}_T E, \text{Curl}_T P \in H^1(\Omega_T) \) and the solution is obtained as the limit of the sequence \((E^\varepsilon, P^\varepsilon)\) of the model problem (3.5).

Proof. To prove this theorem, we pass to the limit in the weak formulation of equation (3.5). Since the limit solution \((E, P)\) is independent of \(z \) and \(e = p = 0 \), we choose test functions of the type \(\varphi = (\varphi_1, \varphi_2, 0), \psi = (\psi_1, \psi_2, 0) \) and a scalar function \(\phi \) which are independent of the variable \(z \). We suppose that \(\varphi, \varphi, \psi \in \mathcal{D}(\Omega_T) \) with \(\text{div}_T \psi = 0 \) and \(\psi \cdot n_T = 0 \) on \(\partial \Omega_T \). Multiplying the first equation by \(\varphi^* \), the second by \(\psi^* \), and the constraint \(\text{div}_\varepsilon P^\varepsilon = 0 \) by \(\phi^* \) then integrating by parts we get

\[
\int_\Omega (\zeta_1(\omega)E^\varepsilon_T - \omega^2 P^\varepsilon_T) \cdot \varphi^* \, dx + \lambda^2 \int_\Omega \text{Curl}_T E^\varepsilon_T \cdot \text{Curl}_T \varphi^* \, dx
\]

\[
+ \imath \mu \omega \beta \int_{\partial \Omega_T \times (0,1)} (E^\varepsilon_T \times n_T) \cdot (\varphi^* \times n_T) \, d\sigma + \imath \mu \omega \beta_0 \int_\Omega_T (E^\varepsilon_T \times u_3) \cdot (\varphi^* \times u_3) (x_T, 0) \, dx_T
\]

\[
+ \imath \mu \omega \beta_1 \int_\Omega_T (E^\varepsilon_T \times u_3) \cdot (\varphi^* \times u_3) (x_T, 1) \, dx_T = \imath \omega \int_\Omega F \cdot \varphi^* \, dx,
\]

\[
\int_\Omega (\zeta_2(\omega)P^\varepsilon_T + b(E_{eq}(P^\varepsilon) - E^\varepsilon_T)) \cdot \psi^* \, dx + \lambda^2 \int_\Omega \text{curl}_T P^\varepsilon_T \cdot \text{curl}_T \psi^* \, dx = 0,
\]

\[
\int_\Omega P^\varepsilon_T \cdot \nabla_T \phi^* \, dx = 0,
\]

where we set \(E_{eq}(P^\varepsilon) = (E_{eq}(P^\varepsilon), e_{eq}(P^\varepsilon)) \). We used \(- \Delta \varepsilon P^\varepsilon = \text{curl}_\varepsilon^2 P^\varepsilon, \text{div}_\varepsilon P^\varepsilon = 0, \text{curl}_\varepsilon E^\varepsilon = (\theta^\varepsilon, \text{Curl}_T E^\varepsilon_T), \text{curl}_\varepsilon \phi = (0, 0, \text{Curl}_T \varphi)\), and the same properties for \(P^\varepsilon \).
Applying our convergence results proved in Section 3 and passing to the limit in the weak formulation, we obtain

\[
\int_{\Omega} (\zeta_1(\omega)E - \omega^2P) \cdot \phi^* \, dx_T + \lambda^2 \int_{\Omega} \text{Curl}_T E \cdot \text{Curl}_T \phi^* \, dx_T
\]
\[
+ \omega \mu (\beta_1 + \beta_0) \int_{\partial \Omega} (E \times \mathbf{u}_3) \cdot (\phi^* \times \mathbf{u}_3) \, d\sigma
\]
\[
+ \omega \beta \mu \int_{\partial \Omega} (E \times n_T) \cdot (\phi^* \times n_T) \, d\sigma = \omega \int_{\Omega} F \cdot \phi^* \, dx_T,
\]
\[
\int_{\Omega} (\zeta_2(\omega)P + b(E_{eq}(P) - E)) \cdot \psi^* \, dx_T + \lambda^2 \int_{\Omega} \text{Curl}_T P \cdot \text{Curl}_T \psi^* \, dx_T = 0,
\]
\[
\int_{\Omega} P \cdot \nabla T \phi^* \, dx_T = 0.
\]

(4.3)

Observe that the condition \(\text{div}_T P = 0 \) shows that \(\text{curl}_T(\text{Curl}_T P) = -\Delta P \). Our main result is then proved.

\[\square\]

5. Concluding remarks

Let us conclude this work by the following remarks. If we impose that the regular part of the polarization \(P \) is 0, then \(P = \nabla \phi \) with \(\phi = c \) on \(\partial \Omega \). The equation satisfied by the polarization field writes in \(\Omega \) as

\[
(\zeta_2(\omega) + 2b\phi'(|\nabla \phi|^2)) \nabla \phi = bE
\]

(5.1)

while the electric field \(E \) satisfies the Maxwell equation

\[
\zeta_1(\omega)E + \lambda^2 \text{curl}^2 E - \omega^2 \nabla \phi = \omega \mu F.
\]

(5.2)

We set, for \(X \in \mathbb{C} \), \(a(|X|^2) = 2b\phi'(|X|^2) - \omega^2 + i\omega a_2 \). We will show that the map

\[
X \in \mathbb{C} \mapsto H(X) = a(|X|^2)X \in \mathbb{C}
\]

(5.3)

is onto. The equation \(a(|X|^2)X = Y \) gives \(|a(r)|^2 r = t \) with \(r = |X|^2 \) and \(t = |Y|^2 \) or equivalently as \((2b\phi'(r) - \omega^2)^2 + \omega^2 a_2^2) r = t \). Let

\[
\theta(r) = |a(r)|^2 r = (2b\phi'(r) - \omega^2)^2 r + \omega^2 a_2^2 r,
\]

(5.4)

then we have \(\theta'(r) = (2b\phi'(r) - \omega^2)^2 + a_2^2 \omega^2 + 4br\phi(2)(r)(2b\phi'(r) - \omega^2) \). It follows that \(\theta'(r) = (2b\phi'(r) - \omega^2 + 2b\phi(2)(r))^2 + a_2^2 - 4b^2 r^2 (\phi(2)(r))^2 \). Assuming that \(0 \leq r\phi(2)(r) \leq a_2 \omega/(2b) \) for all \(r \geq 0 \), we get \(\theta'(r) > 0 \) for all \(r \geq 0 \). Consequently, \(\theta \) is invertible and for all \(t \geq 0 \) there exists a unique \(r \geq 0 \) given by \(r = \theta^{-1}(t) \). Hence, for all \(Y \in \mathbb{C} \), the equation \(\theta(|X|^2) = |Y|^2 \) gives \(|X|^2 = \theta^{-1}(|Y|^2) \). Finally, for given \(Y \in \mathbb{C} \), the equation \(a(|X|^2)X = Y \) admits a unique solution \(X \in \mathbb{C} \) given by \(X = Y/a(\theta^{-1}(|Y|^2)) \).
Now, let $E \in L^2(\Omega)$, then there exists a unique $U \in L^2(\Omega)$ solution to the equation $a(|U|^2)U = bE$ which is given by

$$U = \frac{bE}{a(\theta^{-1}(b^2|E|^2))}.$$

(5.5)

Finally, E should satisfy the nonlinear Maxwell equation

$$\zeta_1(\omega)E + \lambda^2 \text{curl}^2 E = \omega^2 b \sigma(|E|^2)E + \omega F,$$

$$\text{curl}(\sigma(|E|^2)E) = 0,$$

$$E \times n = 0,$$

(5.6)

with $\sigma(|E|^2) = 1/a(\theta^{-1}(b^2|E|^2))$. The condition $\text{curl}(\sigma(|E|^2)E) = 0$ allows to show that $\sigma(|E|^2)E$ is a gradient. We will come back to this problem in a forthcoming work.

In [5, Section 3], and [6, Section 2.2], the authors introduce the following model equations to describe the dynamic of the time-dependant spontaneous polarization p in a ferroelectric domain Ω (here we use the Daví notations):

$$\rho_m \partial_t^2 p + (D + G) \partial_t p - \sigma^2 \Delta p = \frac{\partial W}{\partial p}(p) + \frac{\partial \phi}{\partial p}(F, e, p) - \rho e,$$ \quad \text{in } \Omega \times (0, T),

$$\sigma^2 \frac{\partial p}{\partial n} = t,$$ \quad \text{on } \partial \Omega \times (0, T),

$$p(0) = p_0,$$ \quad $$\rho_m \partial_t p(0) = p_1.$$

(5.7)

The electric field e with p satisfies in $\mathbb{R}^3 \times (0, T)$ the electrostatic equations

$$\text{div}(\rho p + e) = 0,$$ \quad $$\text{curl} e = 0,$$

(5.8)

with the natural jump conditions across the boundary $\partial \Omega \times (0, T)$. The parameters appearing in the equation are defined in [5, 6]. It is important to notice that the system is coupled to some elasticity model describing the dynamic of the deformation F (e.g., when we assume that $F = I + \nabla u$ where u is the mechanical displacement, see [6, Section 3]). Next, the nonhomogeneous boundary condition satisfied by p takes into account the density of the electric dipoles. This model is more complete than the one introduced in [1]. If we consider rigid body, then both models are essentially the same. An interesting question is to study the full model satisfied by (e, p, u).

Acknowledgment

The authors appreciate very much the comments and remarks of the referee, his enlightenments about ferroelectric models, and for quoting references [5, 7].
References

Naïma Aïssa: Centre de Mathématiques Appliquées (CMAP), UMR 7641 CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Current address: Faculté de Mathématiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, Bab Ezzouar, Alger 16123, Algeria
Email address: aissa@cmap.polytechnique.fr

Kamel Hamdache: Centre de Mathématiques Appliquées (CMAP), UMR 7641 CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Email address: hamdache@cmap.polytechnique.fr
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru