ABSTRACT. A study of prolongations of F-structure to the tangent bundle of order 2 has been presented.

KEY WORDS AND PHRASES. Prolongations, tangent bundle, integrable, lift, F-structure.

1991 AMS SUBJECT CLASSIFICATION CODE. 53C15

1. INTRODUCTION.

Let F be a nonzero tensor field of type $(1,1)$ and of class c^∞ on an n-dimensional manifold V_n such that [1]

$$F^K + (-)^{K+1}F = 0 \quad \text{and} \quad F^W + (-)^{W+1}F \neq 0 \quad \text{for} \quad 1 < W < K$$ \(1.1\)

where K is a fixed positive integer greater than 2. Such a structure on V_n is called an F-structure of rank 'r' and degree K. If the rank of F is constant and $r = r(F)$, then V_n is called an F-structure manifold of degree $K(\geq 3)$. The case when K is odd has been considered in this paper.

Let the operators on V_n be defined as follows [1]:

$$I = (-)^{K}F^{-1} \quad \text{and} \quad m = I + (-)^{K+1}F^{-1}$$ \(1.2\)

where I denotes the identity operator on V_n.

From the operators defined by (1.2) we have

$$l + m = I \quad \text{and} \quad l^2 = l; \quad \text{and} \quad m^2 = m$$ \(1.3\)

For F satisfying (1.1), there exist complementary distributions L and M corresponding to the projection operators l and m respectively.

If rank $(F) = \text{constant on } V_n$ then $\dim L = r$ and $\dim M = (n - r)$. We have the following results [1]

$$Fl = lF = F \quad \text{and} \quad Fm = mF = 0$$ \(1.4a\)

$$F^{K-1}l = -l \quad \text{and} \quad F^{K-1}m = 0$$ \(1.4b\)

2. PROLONGATIONS OF F-STRUCTURE IN THE TANGENT BUNDLE OF ORDER 2.

Let V_n be an n-dimensional differentiable manifold of class c^∞ and $T_p(V_n) = \bigcup_{p \in V_n} T_p(V_n)$ is the tangent bundle over the manifold V_n.

Let us denote $T_p^\prime(V_n)$, the set of all tensor fields of class c^∞ and of the type (r,s) in V_n and $T(V_n)$ be the tangent bundle over V_n.

Let us introduce an equivalence relation \(\sim \) in the set of all differentiable mappings \(F: R \rightarrow V_n \) where \(R \) is the real line. Let \(r \geq 1 \) be a fixed integer. If two mappings \(F: R \rightarrow V_n \) and \(G: R \rightarrow V_n \) satisfy the conditions

\[
F^h(0) = G^h(0), \quad \frac{dF^h(0)}{dt} = \frac{dG^h(0)}{dt}, \ldots, \quad \frac{d^rF^h(0)}{dt^r} = \frac{d^rG^h(0)}{dt^r},
\]

the mapping \(F \) and \(G \) being represented respectively by \(X^h = F^h(t) \) and \(X^h = G^h(t) \), \(t \in R \) with respect to local coordinates \(X^h \) in a coordinate neighborhood \((U, X^h) \) containing the point \(P = F(0) = G(0) \), then we say that the mapping \(F \) is equivalent to \(G \). Each equivalence class determined by the equivalence relation \(\sim \) is called an \(r \)-jet of \(V_n \) and denoted by \(J^r(F) \). The set of all \(r \)-jets of \(V_n \) is called the tangent bundle of order \(r \) and denoted by \(T^r(V_n) \). The tangent bundle \(T_2^2(V_n) \) of order 2 has the natural bundle structure over \(V_n \), its bundle projection \(\pi^2: T_2^2(V_n) \rightarrow V_n \) being defined by \(\pi^2(J^2(F)) = P \). If we introduce a mapping such that \(P = F(0) \), then \(T_2^2(V_n) \) has a bundle structure over \(T(V_n) \) with projection \(\pi_{12} \).

Let us denote \(T_2^2(V_n) \), the second order tangent bundle over \(V_n \) and let \(F^{II} \) be the second lift of \(F \) in \(T_2^2(V_n) \). The second lift \(F^{II} \) which belong to \(T_2^2(T_2^2(V_n)) \) has component of the form [3]

\[
F^{II} = \begin{bmatrix}
F^h_t & 0 & 0 \\
0 & F^h_t & 0 \\
(y^t_t \delta_s F^h_t + (1/2)y^t_t \delta_s x^h_t) & F^h_t & F^h_t
\end{bmatrix}
\]

with respect to the induced coordinates in \(T_2^2(V_n) \), \(F^h_t \) being local components of \(F \) in \(V_n \).

Now we obtain the following results on the second lift of \(F \) satisfying (1.1).

For any \(F, G \in T^1_1(V_n) \), the following holds [3]:

\[
(G^{II} F^{II}) X^{II} = G^{II} (FX^{II}),
\]

\[
= G^{II} (FX)^{II}
\]

\[
= G(FX)^{II}
\]

\[
= (GF)^{II} X^{II} \quad \text{for every } X \in T_0^2(V_n),
\]

therefore we have

\[
G^{II} F^{II} = (GF)^{II}
\]

If \(P(s) \) denote a polynomial of variable \(s \), then we have

\[
(P(F))^{II} = P(F^{II}), \quad \text{where } F \in T^1_1(V_n)
\]

We have the following theorem:

THEOREM 2.1. The second lift \(F^{II} \) defines a \(F \)-structure in \(T_2^2(V_n) \) iff \(F \) defines a \(F \)-structure in \(V_n \).

PROOF. Let \(F \) satisfy (1.1) then \(F \) defines \(F \)-structure in \(V_n \) satisfying

\[
F^K + (-)^{K+1} F = 0,
\]

which in view of equation (2.3) yields
PROLONGATIONS OF F-STRUCTURE TO THE TANGENT BUNDLE 203

\[(F^{II})^K + (-)^K + 1F^{II} = 0.\] \hfill (2.4)

Therefore \(F^{II}\) defines a \(F\)-structure in \(T_2(V_n)\). The converse can be proved in a similar manner.

THEOREM 2.2. The second lift \(F^{II}\) is integrable in \(T_2(V_n)\), iff \(F\) is integrable in \(V_n\).

PROOF. Let us denote \(N_{II}\) and \(N\), the Nijenhuis tensors of \(F^{II}\) and \(F\) respectively. Then we have \[N_{II}(X,Y) = (N(X,Y))^{II}\] \hfill (2.5)

We know that \(F\)-structure is integrable in \(V_n\), iff

\[N(X,Y) = 0,
\]

which in view of (2.5) is equivalent to

\[N_{II}(X,Y) = 0.\] \hfill (2.6)

Thus \(F^{II}\) is integrable, iff \(F\) is integrable in \(V_n\).

THEOREM 2.3. The second lift \(F^{II}\) of \(F\) is partially integrable in \(T_2(V_n)\), iff \(F\) is integrable in \(V_n\).

PROOF. We know that for \(F\) to be partially integrable in \(V_n\), the following holds \[N(IX, lV) = 0\]

and

\[N(mX, mY) = 0,
\]

which, in view of equation (2.5), takes the form

\[N_{II}(l^{II}X^{II}, l^{II}Y^{II}) = 0\]

and

\[N_{II}(m^{II}X^{II}, m^{II}Y^{II}) = 0.\] \hfill (2.7)

where \(l^{II}, m^{II}\) are operators in \(T_2(V_n)\) which define the distribution \(L^{II}\) and \(M^{II}\) respectively. Thus equation (2.7) gives the condition for \(F^{II}\) to be partially integrable.

The converse follows in a similar manner.

REFERENCES

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com