ON THE NON-EXISTENCE OF SOME INTERPOLATORY POLYNOMIALS

C.H. ANDERSON and J. PRASAD
Department of Mathematics
California State University
Los Angeles, California 90032 U.S.A.

(Received May 20, 1985)

ABSTRACT. Here we prove that if \(x_k, k=1,2,\ldots,n+2 \) are the zeros of \((1-x^2)T_n(x) \) where \(T_n(x) \) is the Tchebycheff polynomial of first kind of degree \(n \), \(\alpha_j, \beta_j, j=1,2,\ldots,n+2 \) and \(\gamma_j, j=2,3,\ldots,n+1 \) are any real numbers there does not exist a unique polynomial \(Q_{3n+3}(x) \) of degree \(\leq 3n+3 \) satisfying the conditions:

\[Q_{3n+3}(x_j) = \alpha_j, \quad Q''_{3n+3}(x_j) = \beta_j, \quad j=1,2,\ldots,n+2 \text{ and } Q_{3n+3}(x_j) = \gamma_j, \quad j=2,3,\ldots,n+1. \]

Similar result is also obtained by choosing the roots of \((1-x^2)P_n(x) \) as the nodes of interpolation where \(P_n(x) \) is the Legendre polynomial of degree \(n \).

KEY WORDS AND PHRASES. Roots, interpolatory polynomials, non-existence, nodes.

1980 AMS SUBJECT CLASSIFICATION CODE. 41A25.

1. INTRODUCTION.

In [1] R.B. Saxena considered an interesting problem of \((0,1,3)\) interpolation by taking the roots of \((1-x^2)P_{n-2}(x) \), where \(P_{n-2}(x) \) is the Legendre polynomial of degree \(n-2 \), as the nodes of interpolation. By \((0,1,3)\) interpolation, Saxena meant that for the collections \(\{\alpha_j\}_{j=1}^n, \{\beta_j\}_{j=2}^n \text{ and } \{\gamma_j\}_{j=1}^{n-1} \) of real numbers and the zeros \(x_j \) of \((1-x^2)P_{n-2}(x) \) arranged so that

\[-1 = x_n < x_{n-1} < \ldots < x_2 < x_1 = 1\]

a polynomial \(R_n(x) \) of degree \(\leq 3n-3 \) can be constructed so that

\[R_n(x_j) = \alpha_j; \quad j=1,2,\ldots,n, \]

\[R_n'(x_j) = \beta_j; \quad j=2,3,\ldots,n-1, \]

and

\[R_n''(x_j) = \gamma_j; \quad j=1,2,\ldots,n. \]

Saxena proved that such a polynomial exists uniquely if \(n \) is even and for \(n \) odd there does not exist a unique polynomial \(R_n(x) \) satisfying the above conditions.

Later Varma [2] obtained the following result in this direction:

THEOREM 1 (VARMA). Given a positive integer \(n \) and real numbers \(\alpha_k(k=1,2,\ldots,n+2), \beta_k, \gamma_k(k=2,3,\ldots,n+1) \) there is, in general no polynomial \(F_{3n+1}(x) \) of degree \(\leq 3n+1 \) such that \(F_{3n+1}(x_k) = \alpha_k; \quad k=1,2,\ldots,n+2, \quad F_{3n+1}'(x_k) = \beta_k; \)
2. MAIN RESULTS.

In connection with the above results we shall prove the following.

THEOREM 2. For any positive integer \(n \), with \(1 = \xi_1 > \xi_2 > \ldots > \xi_{n+1} > \xi_{n+2} = -1 \) the zeros of \((1 - x^2)T_n(x)\) where \(T_n(x) \) is the Chebyshev polynomial of first kind and if there exists such a polynomial then there is an infinity of them.

2. MAIN RESULTS.

In connection with the above results we shall prove the following.

THEOREM 2. For any positive integer \(n \), with \(1 = \xi_1 > \xi_2 > \ldots > \xi_{n+1} > \xi_{n+2} = -1 \) the zeros of \((1 - x^2)P_n(x)\) where \(P_n(x) \) is the Legendre polynomial of degree \(n \), there is in general no polynomial \(R_{3n+1}(x) \) of degree \(3n + 1 \) such that, for arbitrary real numbers \(\{a_j\}_{n+2}^{j=1}, \{\beta_j\}_{n+2}^{j=1} \) and \(\{\gamma_j\}_{n+2}^{j=1} \) the conditions:

\[
R_{3n+1}(\xi_j) = a_j; \quad j = 1, 2, \ldots, n + 1, n + 2, \quad (2.1)
\]

\[
R_{3n+1}(\xi_j) = \beta_j; \quad j = 2, 3, \ldots, n + 1 \quad (2.2)
\]

and

\[
R_{3n+1}(\xi_j) = \gamma_j; \quad j = 2, 3, \ldots, n + 1 \quad (2.3)
\]

are satisfied. If there does exist such a polynomial then there are infinitely many of them.

We also prove the following result for Chebyshev nodes:

THEOREM 3. For any positive integer \(n \), with \(1 = x_1 > x_2 > \ldots > x_n > x_{n+1} > x_{n+2} = -1 \) the zeros of \(\omega_n(x) = (1 - x^2)T_n(x) \), there is in general no polynomial \(Q_{3n+3}(x) \) of degree \(\leq 3n + 3 \) such that, for arbitrary real numbers \(\{a_j\}_{n+2}^{j=1}, \{\beta_j\}_{n+2}^{j=1} \) and \(\{\gamma_j\}_{n+2}^{j=1} \) the conditions:

\[
Q_{3n+3}(x_j) = a_j; \quad j = 1, 2, \ldots, n + 1, n + 2, \quad (2.4)
\]

\[
Q_{3n+3}(x_j) = \beta_j; \quad j = 1, 2, \ldots, n + 1, n + 2 \quad (2.5)
\]

and

\[
Q_{3n+3}(x_j) = \gamma_j; \quad j = 2, 3, \ldots, n + 1 \quad (2.6)
\]

are satisfied. If there does exist such a polynomial then there are infinitely many of them.

REMARK 1. The comparison of our Theorem 2 with the above mentioned result of Saxena shows that if we do not prescribe the third derivative at \(\pm 1 \) then there does not exist a unique polynomial regardless whether \(n \) is even or odd. In an earlier work [3] we have shown that along with the conditions (2.1), (2.2) and (2.3) if we also prescribe the first derivative at \(\pm 1 \) a unique polynomial of degree \(\leq 3n + 3 \) still does not exist. It is also evident from Theorem 3 that even if we prescribe the first derivative at \(\pm 1 \) a unique polynomial of degree \(\leq 3n + 3 \) does not exist although the nodes of interpolation are different from that of [3].

REMARK 2. We shall give here the proof of Theorem 3 only. The proof of Theorem 2 can be obtained along the same lines.

PROOF OF THEOREM 3. We will show that if all of

\[
a_j = 0; \quad j = 1, 2, \ldots, n + 1, n + 2, \quad (2.7)
\]

\[
\beta_j = 0; \quad j = 1, 2, \ldots, n + 1, n + 2,
\]

\[
\gamma_j = 0; \quad j = 2, 3, \ldots, n + 1
\]
then there exists a polynomial \(Q_{3n+3}(x) \) of degree \(\leq 3n + 3 \) which is not identically zero, but satisfies (2.4), (2.5) and (2.6). The desired result then follows immediately from the theory of linear equations. From the definition of \(\omega_n(x) \) and conditions (2.4), (2.5) and (2.6), together with the requirements (2.7), it is clear that the desired polynomial must be of the form

\[
Q_{3n+3}(x) = (1 - x^2)^2 T_n(x) h_{n-1}(x)
\]

where \(h_{n-1}(x) \) is an unknown polynomial of degree \(\leq n - 1 \). Since we have also required \(Q_{3n+3}(x_j) = 0 \) for \(j = 2, 3, \ldots, n + 1 \), simple calculation provides

\[
(1 - x^2) h_{n-1}'(x) - 3x h_{n-1}(x) = c T_n(x)
\]

for unknown real constant \(c \). Letting \(x = \cos \theta \) and

\[
h_{n-1}(x) = \sum_{k=0}^{n-1} a_k \cos k\theta
\]

we obtain

\[
(1 - x^2) h_{n-1}'(x) = \sum_{k=1}^{n-1} a_k k \sin k\theta \sin \theta.
\]

Thus (2.9) becomes

\[
c \cos n\theta = \sum_{k=0}^{n-1} a_k [k \sin k\theta \sin \theta - 3 \cos k\theta \cos \theta].
\]

From this, we obtain on simplification

\[
2c \cos n\theta = \sum_{k=0}^{n-1} a_k [(k - 3) \cos(k - 1)\theta - (k + 3) \cos(k + 1)\theta],
\]

from which, by collecting the coefficients of \(\cos k\theta \), for \(k = 0, 1, \ldots, n \), we may write

\[
-2a_1 - (6a_0 + a_2) \cos \theta - 4a_1 \cos 2\theta + \sum_{k=3}^{n-2} [(k - 2)a_{k+1} - (k + 2)a_{k-1}] \cos k\theta
\]

\[
-(n + 1)a_{n-2} \cos(n - 1)\theta - (n + 2)a_{n-1} \cos n\theta = 2c \cos n\theta.
\]

This, in turn, leads to the following system of equations

\[
-2a_1 = 0
\]
\[
-(6a_0 + a_2) = 0,
\]
\[
-4a_1 = 0,
\]
\[
(k - 2)a_{k+1} - (k + 2)a_{k-1} = 0; k = 3, 4, \ldots, n - 2,
\]
\[
-(n + 1)a_{n-2} = 0,
\]
\[
-(n + 2)a_{n-1} = 2c.
\]

If \(n \) is even, then

\[
a_0 = a_2 = a_4 = \ldots = a_{n-2} = 0; a_1 = 0
\]
but
\[a_{n-1-2j} = \frac{-2c}{n-2} \prod_{k=0}^{j} \left(\frac{n-2-2k}{n+2-2k} \right); \text{ for } j = 0, 1, \ldots, (n-4)/2 \]
is not necessarily zero.

If \(n \) is odd, then
\[a_1 = a_3 = a_5 = \ldots = a_{n-2} = 0, \]
while
\[a_{2j} = \frac{-2c}{n-2} \prod_{k=j}^{(n-1)/2} \left(\frac{2k-1}{2k+3} \right); \text{ for } j = 1, 2, \ldots, (n-1)/2 \]
with the special case
\[a_0 = -a_2/6 \]
which are not necessarily zero. Hence regardless whether \(n \) is even or odd, in general, there does not exist a unique polynomial \(Q_{3n+3}(x) \) of degree \(\leq 3n+3 \) satisfying (2.4), (2.5) and (2.6) and there are infinitely many if they exist.

This completes the proof of Theorem 3. For a complete history on lacunary interpolation we refer to a paper by J. Balázs [4].

REFERENCES

Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1, 2008</td>
<td>Manuscript Due</td>
</tr>
<tr>
<td>March 1, 2009</td>
<td>First Round of Reviews</td>
</tr>
<tr>
<td>June 1, 2009</td>
<td>Publication Date</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskkla@cityu.edu.hk