COMMON COINCIDENCE POINTS OF R-WEAKLY COMMUTING MAPS

TAYYAB KAMRAN

(Received 22 May 2000)

ABSTRACT. A common coincidence point theorem for R-weakly commuting mappings is obtained. Our result extend several ones existing in literature.

2000 Mathematics Subject Classification. 54H25.

1. Introduction. Throughout this paper, X denotes a metric space with metric d. For $x \in X$ and $A \subseteq X$, $d(x,A) = \inf\{d(x,y) : y \in A\}$. We denote by $CB(X)$ the class of all nonempty bounded closed subsets of X. Let H be the Hausdorff metric with respect to d, that is,

$$H(A,B) = \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\right\}$$

(1.1)

for every $A,B \in CB(X)$. The mappings $T : X \to CB(X)$, $f : X \to X$ are said to be commuting if, $fT X \subseteq T f X$. A point $p \in X$ is said to be a fixed point of $T : X \to CB(X)$ if $p \in T p$. The point p is called a coincidence point of f and T if $fp \in T p$. The mappings $f : X \to X$ and $T : X \to CB(X)$ are called weakly commuting if, for all $x \in X$, $fT x \in CB(X)$ and $H(fT x, T f x) \leq d(fx, Tx)$.

Theorem 1.1. Let X be a complete metric space and $T : X \to CB(X)$. If α is a function of $(0, \infty)$ to $(0,1]$ such that $\limsup_{r \to \tau^+} \alpha(r) < 1$ for each $\tau \in [0, \infty)$ and if

$$H(Tx, Ty) \leq \alpha(d(x,y)) d(x,y)$$

(1.2)

for each $x, y \in X$, then T has a fixed point in X.

The purpose of this paper is to obtain a coincidence point theorem for R-weakly commuting multivalued mappings analogous to **Theorem 1.1**. We follow the same technique used in [2]. The notion of R-weak commutativity for single-valued mappings was defined by Pant [7] to generalize the concept of commuting and weakly commuting mappings [9]. Recently, Shahzad and Kamran [10] extended this concept to the setting of single and multivalued mappings, and studied the structure of common fixed points.
Definition 1.2 (see [10]). The mappings \(f : X \to X \) and \(T : X \to CB(X) \) are called \(R \)-weakly commuting if for all \(x \in X \), \(fTx \in CB(X) \) and there exists a positive real number \(R \) such that

\[
H(Tfx, Tfx) \leq Rd(fx, Tx).
\]

(1.3)

2. Main result. Before giving our main result, we state the following lemmas which are noted in Nadler [6], and Assad and Kirk [1].

Lemma 2.1. If \(A, B \in CB(X) \) and \(a \in A \), then for each \(\varepsilon > 0 \), there exists \(b \in B \) such that

\[
d(a, b) \leq H(A, B) + \varepsilon.
\]

(2.1)

Lemma 2.2. If \(\{A_n\} \) is a sequence in \(CB(X) \) and \(\lim_{n \to \infty} H(A_n, A) = 0 \) for \(A \in CB(X) \). If \(x_n \in A_n \) and \(\lim_{n \to \infty} d(x_n, x) = 0 \), then \(x \in A \).

Now, we prove our main result.

Theorem 2.3. Let \(X \) be a complete metric space, \(f, g : X \to X \) and \(S, T : X \to CB(X) \) are continuous mappings such that \(SX \subseteq gX \) and \(TX \subseteq fX \). Let \(\alpha : (0, \infty) \to (0, 1] \) be such that \(\limsup_{r \to t^+} \alpha(r) < 1 \) for each \(t \in [0, \infty) \) and

\[
H(Sx, Ty) \leq \alpha(d(gx, fy)) d(gx, fy)
\]

(2.2)

for each \(x, y \in X \). If the pairs \((g, T) \) and \((f, S) \) are \(R \)-weakly commuting, then \(g, S \) and \(f, T \) have a common coincidence point.

Proof. Our method is constructive. We construct sequences \(\{x_n\}, \{y_n\}, \) and \(\{A_n\} \) in \(X \) and \(CB(X) \), respectively as follows. Let \(x_0 \) be an arbitrary point of \(X \) and \(y_0 = fx_0 \). Since \(SX_0 \subseteq gX \), there exists a point \(x_1 \in X \) such that \(y_1 = gx_1 \in SX_0 = A_0 \). Choose a positive integer \(n_1 \) such that

\[
\alpha^{n_1}(d(y_0, y_1)) < [1 - \alpha(d(y_0, y_1)))] d(y_0, y_1).
\]

Now Lemma 2.1 and the fact \(TX \subseteq fX \) guarantee that there is a point \(y_2 = fx_2 \in T, x_1 = A_1 \) such that

\[
d(y_2, y_1) \leq H(A_1, A_0) + \alpha^{n_1}(d(y_0, y_1)).
\]

(2.4)

The above inequality in view of (2.2) and (2.3) implies that \(d(y_2, y_1) < d(y_0, y_1) \). Now choose a positive integer \(n_2 > n_1 \) such that

\[
\alpha^{n_2}(d(y_2, y_1)) < [1 - \alpha(d(y_2, y_1)))] d(y_2, y_1).
\]

(2.5)

Again using Lemma 2.1 and the fact \(SX \subseteq gX \), we get a point \(y_3 = gx_3 \in SX_2 = A_2 \) such that

\[
d(y_3, y_2) \leq H(A_2, A_1) + \alpha^{n_2}(d(y_2, y_1)).
\]

(2.6)

Now (2.2) and (2.5) further imply that \(d(y_3, y_2) < d(y_2, y_1) \).
By induction we obtain sequences \(\{x_n\}, \{y_n\}, \) and \(\{A_n\} \) in \(X \) and \(CB(X) \), respectively, such that

\[
y_{2k+1} = gx_{2k+1} \in Sx_{2k} = A_{2k}, \quad y_{2k} = fx_{2k} \in Tx_{2k-1} = A_{2k-1}, \tag{2.7}
\]

\[
d(y_{2k+1}, y_{2k}) \leq H(A_{2k}, A_{2k-1}) + \alpha^{k+1}(d(y_{2k}, y_{2k-1})), \tag{2.8}
\]

where

\[
\alpha^{n+1}(d(y_{2k}, y_{2k-1})) < \{1 - \alpha(d(y_{2k}, y_{2k-1}))\} d(y_{2k}, y_{2k-1}) \tag{2.9}
\]

for each \(k \). So we have \(d(y_{2k+1}, y_{2k}) < d(y_{2k}, y_{2k-1}) \). Therefore, the sequence \(\{d(y_{2k+1}, y_{2k})\} \) is monotone nonincreasing. Then, as in the proof of Theorem 2.1 in [2], \(\{y_n\} \) is a Cauchy sequence in \(X \). Further, equation (2.2) ensures that \(\{A_n\} \) is a Cauchy sequence in \(CB(X) \). It is well known that if \(X \) is complete, then so is \(CB(X) \). Therefore, there exist \(z \in X \) and \(A \in CB(X) \) such that \(y_n \to z \) and \(A_n \to A \). Moreover, \(gx_{2k+1} \to z \) and \(fx_{2k} \to z \). Since

\[
d(z, A) = \lim_{n \to \infty} d(y_n, A_n) \leq \lim_{n \to \infty} H(A_{n-1}, A_n) = 0, \tag{2.10}
\]

it follows from Lemma 2.2 that \(z \in A \). Also

\[
\lim_{k \to \infty} fx_{2k} = z \in A = \lim_{k \to \infty} Sx_{2k}, \quad \lim_{k \to \infty} gx_{2k+1} = z \in A = \lim_{k \to \infty} Tx_{2k-1}. \tag{2.11}
\]

Using (2.7) and \(R \)-weak commutativity of the pairs \((g, T)\) and \((f, S)\), we have

\[
d(gfx_{2k+2}, Tgx_{2k+1}) \leq H(gTx_{2k+1}, Tgx_{2k+1}) \leq Rd(gx_{2k+1}, Tx_{2k+1}),
\]

\[
d(fgx_{2k+1}, Sfx_{2k}) \leq H(Sfx_{2k}, Sfx_{2k}) \leq Rd(fx_{2k}, Sx_{2k}). \tag{2.12}
\]

Now it follows from the continuity of \(f, g, T, \) and \(S \) that \(gz \in Tz \) and \(fz \in Sz \). \(\square \)

If we put \(T = S \) and \(f = g \) in Theorem 2.3, we get the following corollary.

Corollary 2.4. Let \(X \) be a complete metric space, and let \(f : X \to X \) be a continuous mapping and \(T : X \to CB(X) \) be a mapping such that \(TX \subseteq fX \). Let \(\alpha : (0, \infty) \to (0, 1] \) be such that \(\limsup_{r \to t^+} \alpha(r) < 1 \) for each \(t \in [0, \infty) \) and

\[
H(Tx, Ty) \leq \alpha(H(fx, fy)) d(fx, fy) \tag{2.13}
\]

for each \(x, y \in X \). If the mappings \(f \) and \(T \) are \(R \)-weakly commuting, then \(f \) and \(T \) have coincidence point.

Remark 2.5. (1) Theorem 2.3 improves and extends some known results of Hu [3], Kaneko [4], Mizoguchi and Takahashi [5], and Nadler [6].

(2) In Corollary 2.4, \(T \) is not assumed to be continuous. In fact the continuity of \(T \) follows from the continuity of \(f \).

(3) If we put \(f = I \), the identity map, in Corollary 2.4, we obtain Theorem 1.1.
Acknowledgement. The author is grateful to Dr. Naseer Shahzad for his useful suggestions.

References

