TERMINAL VALUE PROBLEMS OF IMPULSIVE
INTEGRO-DIFFERENTIAL EQUATIONS
IN BANACH SPACES

DAJUN GUO
Shandong University
Department of Mathematics
Jinan 250100, PR of China

(Received September, 1995; Revised February, 1996)

This paper uses cone theory and the monotone iterative technique to investigate the existence of minimal nonnegative solutions of terminal value problems for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space.

Key words: Terminal Value Problem, Impulsive Integro-Differential Equation, Cone Theory, Monotone Iterative Technique.

AMS subject classifications: 45J05.

1. Introduction

The theory of impulsive differential equations has become an important area of investigation. Initial value problems of such equations have been discussed in detail in recent years (see [3]). In this paper, we shall use cone theory and the monotone iterative technique to investigate the existence of a minimal nonnegative solution of the terminal value problem (TVP) for a first order nonlinear impulsive integro-differential equation of mixed type in a Banach space.

2. Preliminaries

Let E be a real Banach space and P be a cone in E which defines a partial order in E: $x \leq y$ if and only if $y - x \in P$. P is said to be normal if there exists a positive constant N such that $\theta \leq x \leq y$ implies $\|x\| \leq N \|y\|$, where θ denotes the zero element of E. P is said to be regular (or fully regular) if $x_1 \leq x_2 \leq \ldots \leq x_n \leq \ldots \leq y$ (or $x_1 \leq x_2 \leq \ldots \leq x_n \leq \ldots$ with $\sup_n \|x_n\| < \infty$) implies $\|x_n - x\| \to 0$ as $n \to \infty$ for some $x \in E$. The full regularity of P implies the regularity of P, and the regularity of P implies the normality of P (see [2], Theorem 1.2.1). Moreover, if E is weakly complete (in particular, reflexive), then the normality of P implies the regularity of

1Research supported by NNSF-China and SECDF-China.
Consider the TVP in E:

$$\begin{align*}
 x' &= f(t,x,Tx,Sx), \\
 \Delta x \mid_{t=t_m} &= I_m(x(t_m)), \\
 x(\infty) &= x^*,
\end{align*}$$

where $J = [0, \infty)$, $f \in C(J \times P \times P \times P, -P)$, $0 < t_1 < \ldots < t_m < \ldots$, $t_m \to \infty$ and $m \to \infty$, $I_m \in C(P, -P)$ ($m = 1, 2, 3, \ldots$), $x^* \in P$, $x(\infty) = \lim_{t \to \infty} x(t)$, and

$$\begin{align*}
 (Tx)(t) &= \int_0^t k(t,s)x(s)ds, \\
 (Sx)(t) &= \int_0^\infty h(t,s)x(s)ds,
\end{align*}$$

$k \in C(D, R_+)$, $D = \{(t,s) \in J \times J: t \geq s\}$, $h \in C(J \times J, R_+)$. $\Delta x \mid_{t=t_m} = x(t_m^+) - x(t_m^-)$ which denotes the jump of $x(t)$ at $t = t_m$. Here $x(t_m^+)$ and $x(t_m^-)$ represent the right- and left-sided limits of $x(t)$ at $t = t_m$, respectively.

Let $PC(J,E) = \{x: x$ is a map from J into E such that $x(t)$ is continuous at $t \neq t_m$ and left continuous at $t = t_m$ and $x(t_m^+)$ exists for $m = 1, 2, 3, \ldots\}$, $BPC(J,E) = \{x \in PC(J,E): \sup \|x(t)\| < \infty\}$ and $TPC(J,E) = \{x \in PC(J,E): x(\infty) = \lim_{t \to \infty} x(t) \text{ exists}\}$. Evidently, $TPC(J,E) \subset BPC(J,E)$, and $BPC(J,E)$ is a Banach space with norm $\|x\| = \sup \|x(t)\|$. Let $BPC(J,P) = \{x \in BPC(J,E): x(t) \geq 0 \text{ for } t \in J\}$, $TPC(J,P) = \{x \in TPC(J,E): x(t) \geq 0 \text{ for } t \in J\}$ and $J' = J \setminus \{t_1, \ldots, t_m, \ldots\}$. A map $x \in TPC(J,P) \cap C^1(J',E)$ is called a non-negative solution of TVP(1) if it satisfies (1).

3. Main Results

Let us list some conditions.

\begin{itemize}
 \item[(H1)] $k^* = \sup_{t \in J} \int_0^t k(t,s)ds < \infty$, $h^* = \sup_{t \in J} \int_0^\infty h(t,s)ds < \infty$ and
 \[\lim_{t' \to t} \int_0^t |h(t',s) - h(t,s)| ds = 0, \quad t \in J.\]
 \item[(H2)] $\|f(t,x,y,z)\| \leq p(t) + q(t)(a \|x\| + b \|y\| + c \|z\|)$, $t \in J$, $x,y,z \in P$, and
 \[\|I_m(x)\| \leq a_m + b_m \|x\|, \quad x \in P(m = 1, 2, 3, \ldots),\]
 where $p,q \in C(J,R_+)$ and $a \geq 0$, $b \geq 0$, $a_m \geq 0$, $b_m \geq 0$ ($m = 1, 2, 3, \ldots$) satisfying
 \[p^* = \int_0^\infty p(t)dt < \infty, \quad q^* = \int_0^\infty q(t)dt < \infty, \quad a^* = \sum_{m=1}^{\infty} a_m < \infty, \quad b^* = \sum_{m=1}^{\infty} b_m < \infty.\]
 \item[(H3)] $f(t,x,y,z)$ is nonincreasing in $x,y,z \in P$ and $I_m(x)$ is nonincreasing in $x \in P$ ($m = 1, 2, 3, \ldots$), i.e.
\end{itemize}
Terminal Value Problems of Impulsive Integro-Differential Equations

\[f(t, x, y, z) \leq f(t, \bar{x}, \bar{y}, \bar{z}), \quad t \in J, \quad x \geq \bar{x} \geq \theta, \quad y \geq \bar{y} \geq \theta, \quad z \geq \bar{z} \geq \theta \]

and

\[I_m(x) \leq I_m(\bar{x}), \quad x \geq \bar{x} \geq \theta \quad (m = 1, 2, 3, \ldots). \]

It is easy to see that when (H₁) is satisfied, T and S, defined by (2), are bounded linear operators from BPC(J, E) into BPC(J, E).

Lemma 1: If conditions (H₁) and (H₂) are satisfied, then for any \(x \in BPC(J, P) \), the integral

\[\int_0^\infty f(t, x(t), (Tx)(t), (Sx)(t))dt \]

and the series

\[\sum_{m=1}^\infty I_m(x(t_m)) \]

are convergent.

Proof: Let \(x \in BPC(J, P) \). By virtue of (H₁) and (H₂), it is easy to see that

\[\int_0^\infty \| f(s, x(s), (Tx)(s), (Sx)(s)) \| ds \leq \int_0^\infty p(s)ds + (a + bk^* + ch^*) \| x \| B \int_0^\infty q(s)ds < \infty \]

and

\[\sum_{m=1}^\infty \| I_m(x(t_m)) \| \leq \sum_{m=1}^\infty a_m + \| x \| B \sum_{m=1}^\infty b_m < \infty, \]

so, integral (3) and series (4) are convergent.

Lemma 2: Let conditions (H₁) and (H₂) be satisfied. Then \(x \in TPC(J, P) \cap C^1(J', E) \) is a solution of TVP(1) if and only if \(x \in BPC(J, P) \) is a solution to the following impulsive integral equation

\[x(t) = x^* - \int_t^{\infty} f(s, x(s), (Tx)(s), (Sx)(s))ds - \sum_{t \leq t_m < \infty} I_m(x(t_m)), \quad t \in J. \]

Proof: Let \(x \in TPC(J, P) \cap C^1(J', E) \) be a solution of TVP(1). We first establish the following formula:

\[x(t) = x(0) + \int_0^t x'(s)ds + \sum_{0 < t_m < t} [x(t_m^+) - x(t_m)], \quad t \in J. \]

In fact, let \(t_m \leq t \leq t_{m+1} \). Then

\[x(t) - x(0) = \int_0^{t_1} x'(s)ds, \quad x(t_1) - x(0) = \int_{t_1}^{t_2} x'(s)ds, \]

\[\dot{\cdots}, \dot{\cdots}, \dot{\cdots}\]

\[x(t_m) - x(t_{m-1}) = \int_{t_{m-1}}^{t_m} x'(s)ds, \quad x(t) - x(t_m^+) = \int_{t_m}^{t} x'(s)ds. \]
Summing up these equations, we get

$$x(t) = x(0) + \int_0^t f(s, x(s), (Tx)(s), (Sx)(s))ds + \sum_{0 < m < t} I_m(x(t_m)), \quad t \in J. \tag{7}$$

By Lemma 1, integral (3) and series (4) are convergent, hence, from (1) and (7) we get

$$x^* = x(0) + \int_0^\infty f(s, x(s), (Tx)(s), (Sx)(s))ds + \sum_{m = 1}^{\infty} I_m(x(t_m)). \tag{8}$$

Solving $x(0)$ from (8) and substituting it into (7), we find that $x(t)$ satisfies equation (5).

Conversely, if $x \in BPC(J, P)$ is a solution of equation (5), direct differentiation of (5) implies that $x \in C^1(J', E)$ and $x(t)$ satisfies TVP(1).

Consider operator A defined by

$$(Ax)(t) = x^* - \int_0^\infty f(s, x(s), (Tx)(s), (Sx)(s))ds - \sum_{t \leq t_m < \infty} I_m(x(t_m)). \tag{9}$$

Lemma 3: If conditions (H_1) and (H_2) are satisfied, then A defined by (9) is an operator from $BPC(J, P)$ into $BPC(J, P)$.

Proof: Let $x \in BPC(J, P)$. Since $f \in C(J \times P \times P \times P, P)$, $I_m \in C(P, P)$ and $x^* \in P$, we see that $(Ax)(t) \geq 0$ for $t \in J$, and clearly $Ax \in PC(J, P)$. By (H_1) and (H_2), we have

$$\| (Ax)(t) \| \leq \| x^* \| + \int_0^\infty p(s)ds + (a + bk^* + ch^*) \| x \| B \int_0^\infty q(s)ds$$

$$+ \sum_{t \leq t_m < \infty} a_m + \| x \| B \sum_{t \leq t_m < \infty} b_m$$

$$\leq \| x^* \| + p^* + a^* + [b^* + (a + bk^* + ch^*)q^*] \| x \| B, \quad t \in J,$$

and therefore

$$\| Ax \| B \leq \| x^* \| + p^* + a^* + [b^* + (a + bk^* + ch^*)q^*] \| x \| B. \tag{10}$$

Hence $Ax \in BPC(J, P)$.

In the following, let $J_0 = [0, t_1], \ J_m = (t_m, t_{m+1}] (m = 1, 2, 3, \ldots)$.

Theorem 1: Let cone P be fully regular and conditions (H_1), (H_2), (H_3) be satisfied. Assume that

$$r = b^* + (a + bk^* + ch^*)q^* < 1, \tag{11}$$

where constants $k^*, h^*, a, b, c, q^*, b^*$ are defined by (H_1) and (H_2). There exists a nondecreasing sequence $\{x_n\} \subset TPC(J, P) \cap C^1(J', E)$ which converges on J (uniformly in each J_m, $m = 0, 1, 2, \ldots$) to the minimal solution $x \in TPC(J, P) \cap C^1(J', E)$ of TVP(1) in $TPC(J, P) \cap C^1(J', E)$, i.e., for any solution $x \in$
Terminal Value Problems of Impulsive Integro-Differential Equations

$TPC(J, P) \cap C^1(J', E)$ of $TVP(1)$, we have

$$x(t) \geq \bar{x}(t), \quad t \in J.$$ \hfill (12)

Moreover,

$$\bar{x}(t) \geq \bar{x}(t'), \quad 0 \leq t < t' < \infty,$$ \hfill (13)

and

$$\| \bar{x} \|_B \leq (1 - r)^{-1}(\| x^* \| + p^* + a^*),$$ \hfill (14)

where r is given by (11) and p^*, a^* are defined by (H_2).

Proof: Let $x_0(t) = \theta$, $x_n(t) = (Ax_{n-1})(t)$ $(n = 1, 2, 3, \ldots)$, i.e.,

$$x_n(t) = x^* - \int_0^\infty f(s, x_{n-1}(s), (Tx_{n-1})(s), (Sx_{n-1})(s))ds$$

$$\leq \sum_{t \leq t_m < \infty} I_m(x_{n-1}(t_m)), \quad t \in J(n = 1, 2, 3, \ldots).$$ \hfill (15)

By Lemma 3, $x_n \in BPC(J, P)$ $(n = 0, 1, 2, \ldots)$ and $x_1(t) \geq \theta = x_0(t)$ for $t \in J$, so, (15) and (H_3) imply that

$$0 = x_0(t) \leq x_1(t) \leq x_2(t) \leq \ldots \leq x_n(t) \leq \ldots, \quad t \in J.$$ \hfill (16)

On the other hand, from (10) we know

$$\| x_n \|_B = \| Ax_{n-1} \|_B \leq d + r \| x_{n-2} \|_B, \quad (n = 1, 2, 3, \ldots),$$

where $d = \| x^* \| + p^* + a^*$ and r is given by (11), thus

$$\| x_n \|_B \leq d + r(d + r \| x_{n-2} \|_B) \leq d + rd + r^2(d + r \| x_{n-3} \|_B)$$

$$\leq d + rd + \ldots + r^{n-1}d + r^n \| x_0 \|_B = d + rd + \ldots + r^{n-1}d = d(1 - r^n)(1 - r)^{-1}$$

$$\leq d(1 - r)^{-1}, \quad (n = 1, 2, 3, \ldots).$$ \hfill (17)

It follows from (16), (17), and the full regularity of P that the following limit exists:

$$\lim_{n \to \infty} x_n(t) = \bar{x}(t), \quad t \in J.$$ \hfill (18)

Now we have, by (17),

$$\| f(s, x_{n-1}(s), (Tx_{n-1})(s), (Sx_{n-1})(s)) \| \leq p(s) + (a + bk^* + ch^*) \| x_{n-1} \|_B q(s)$$

$$\leq p(s) + (a + bk^* + ch^*)d(1 - r)^{-1}q(s), \quad s \in J \quad (n = 1, 2, 3, \ldots),$$ \hfill (19)

so, from (15) we know that functions $\{x_{mn}(t)\}$ $(n = 0, 1, 2, \ldots)$ are equicontinuous in J_m $(m = 0, 1, 2, \ldots)$, where $J_m = [t_m, t_{m+1}]$ and

$$x_{mn}(t) = \begin{cases} x_n(t), & t_m < t \leq t_{m+1}; \\ x_n(t_m^+), & t = t_m. \end{cases}$$

Hence, observing (18) and using the Ascoli-Arzela theorem, we see that $\{x_{mn}(t)\}$ $(n = 0, 1, 2, \ldots)$ is compact in $C(J_m, E)$ $(m = 0, 1, 2, \ldots)$ and therefore, by diagonal method, $\{x_n(t)\}$ has a subsequence which converges to $\bar{x}(t)$ uniformly in each J_m $(m = 0, 1, 2, \ldots)$. Since P is also normal and $\{x_n(t)\}$ is nondecreasing, on account of (16), we conclude that the entire sequence $\{x_n(t)\}$ converges to $\bar{x}(t)$ uniformly in
each J_m ($m = 0, 1, 2, ...$), hence, $\bar{x} \in \text{PC}(J, P)$. Moreover, from (17) we know that $\bar{x} \in B\text{PC}(J, P)$ and $\|\bar{x}\|_B \leq d(1 - r)^{-1}$, i.e., (14) holds.

From (18) and (19), we see that

$$
\lim_{n \to \infty} f(s, x_{n-1}(s), (T x_{n-1})(s), (S x_{n-1})(s)) = f(s, \bar{x}(s), (T \bar{x})(s), (S \bar{x})(s))
$$

as $n \to \infty$, $s \in J$, (20)

and

$$
\|f(s, x_{n-1}(s), (T x_{n-1})(s), (S x_{n-1})(s)) - f(s, \bar{x}(s), (T \bar{x})(s), (S \bar{x})(s))\|
\leq 2p(s) + 2(a + b k^* + ch^*)d(1 - r)^{-1}q(s), \quad s \in J \quad (n = 1, 2, 3, ...).
$$

In addition, (17), (18) and (H2) imply that

$$
I_m(x_{n-1}(tm)) \to I_m(\bar{x}(tm)) \text{ as } n \to \infty \quad (m = 1, 2, 3, ...),
$$

and

$$
\sum_{m = j}^{\infty} \|I_m(x_{n-1}(tm))\| \leq \sum_{m = j}^{\infty} a_m + d(1 - r)^{-1} \sum_{m = j}^{\infty} b_m \quad (n = 1, 2, 3, ...),
$$

and

$$
\sum_{m = j}^{\infty} \|I_m(\bar{x}(tm))\| \leq \sum_{m = j}^{\infty} a_m + d(1 - r)^{-1} \sum_{m = j}^{\infty} b_m.
$$

Observing (20)-(24) and taking limits in (15) as $n \to \infty$, we obtain by virtue of the dominated convergence theorem that

$$
\bar{x}(t) = x^* - \int_t^\infty f(s, \bar{x}(s), (T \bar{x})(s), (S \bar{x})(s)) ds - \sum_{t \leq t_m < \infty} I_m(\bar{x}(tm)), \quad t \in J,
$$

which by Lemma 2 implies that $\bar{x} \in T\text{PC}(J, P) \cap C^1(J', E)$ and $\bar{x}(t)$ is a solution of TVP(1). From (25) we see clearly that (13) holds.

Finally, we prove the minimal property of $\bar{x}(t)$. Let $x \in T\text{PC}(J, P) \cap C^1(J', E)$ by any solution of TVP(1). By Lemma 2, $x(t)$ satisfies equation (5). We have $x(t) \geq \bar{x}(t)$ for $t \in J$. Assume that $x(t) \geq x_1(t)$ for $t \in J$. Then (15), (5) and (H3) imply that $x(t) \geq x_n(t)$ for $t \in J$. Hence, by induction, $x(t) \geq x_n(t)$ for $t \in J(n = 0, 1, 2, ...)$, and by taking the limit, we get $x(t) \geq \bar{x}(t)$ for $t \in J$, i.e., (12) holds. The proof is complete.

Example 1: Consider the TVP of infinite system for scalar nonlinear impulsive integro-differential equations

$$
x'_n = -\frac{e^{-t}}{2n + 3(1 + x_n + \sqrt{x_n + 1 + 2x_{2n+1}})} - \frac{e^{-t}}{3n} \left(\int_0^t e^{-(t+s)x_n(s)} ds \right)^{1/3},
\Delta x_n |_{t = m} = -\frac{1}{2n + m + 2} [x_n(m) + x_n + 2(m)], \quad (m = 1, 2, 3, ...),
\quad x_n(\infty) = \frac{1}{n^2}, \quad (n = 1, 2, 3, ...).
$$

Corollary: TVP(26) has a minimal, nonnegative and continuously differentiable on $[0, \infty) \setminus \{1, 2, 3, ...\}$ solution $\{x_n(t)\}$ ($n = 1, 2, 3, ...$) satisfying
Terminal Value Problems of Impulsive Integro-Differential Equations 77

Proof: Let \(E = \ell^1 = \{ x = (x_1, \ldots, x_n, \ldots) : \sum_{n=1}^{\infty} |x_n| < \infty \} \), with norm \(\|x\| = \sum_{n=1}^{\infty} |x_n| \) and \(P = \{ x = (x_1, \ldots, x_n, \ldots) \in \ell^1 : x_n \geq 0, \ n = 1, 2, 3, \ldots \} \). Thus, \(P \) is a normal cone in \(E \). Since \(\ell^1 \) is weakly complete, we conclude that \(P \) is regular. We now prove that \(P \) is fully regular. Let \(x_k = (x_{k1}, \ldots, x_{kn}, \ldots) \in \ell^1 \) \((k = 1, 2, 3, \ldots) \) satisfy \(x_1 \leq x_2 \leq \ldots \leq x_k \leq \ldots \) and \(M = \sup_{k} \|x_k\| < \infty \). Then, \(x_{1n} \leq x_{2n} \leq \ldots \leq x_{kn} \leq \ldots \leq M \ (n = 1, 2, 3, \ldots) \), so, \(\lim_{k \to \infty} x_{kn} = y_n \ (n = 1, 2, 3, \ldots) \) exist. For any positive integer \(i \), we have \(\sum_{n=1}^{i} |x_{kn}| \leq M \ (k = 1, 2, 3, \ldots) \), so, by letting \(k \to \infty \), we find \(\sum_{n=1}^{i} |y_n| \leq M \). Since \(i \) is arbitrary, it follows that \(\sum_{n=1}^{\infty} |y_n| \leq M < \infty \), and therefore \(y = (y_1, \ldots, y_n, \ldots) \in \ell^1 \). It is clear that \(x_1 \leq x_2 \leq \ldots \leq x_k \leq \ldots \leq y \), consequently, the regularity of \(P \) implies that \(\|x_k - x\| \to 0 \) as \(k \to \infty \) for some \(x \in \ell^1 \). Hence the full regularity of \(P \) is proven.

Now, system (26) can be regarded as a TVP of the form (1), where

\[
f(t, x, y, z) = -e^{-(t+1)s} \left(1 + x_n + \sqrt{x_n + 1 + 2x_{2n} + 1} - e^{-2t/3}y_n^{1/3} - e^{-t/3}1/5\right)
\]

and \(t_m = m, \ I_m = (I_{m1}, \ldots, I_{mn}, \ldots) \) with

\[
I_{mn}(x) = -\frac{1}{2^n + m + 2}(x_n + x_n + 2), \ (m, n = 1, 2, 3, \ldots),
\]

and \(x^* = (1, \ldots, 1/2^n, \ldots) \in E \). Evidently, \(f \in C(J \times P \times P \times P, -P) \) and \(I_m \in C(P, -P) \ (m = 1, 2, 3, \ldots) \). \((H_1) \) is obviously satisfied since

\[
k^* = \sup_{t \in J} \int_{0}^{t} e^{-(t+1)s} ds = \sup_{t \in J}(t+1)(1 - e^{-(t+1)t}) \leq 1,
\]

\[
h^* = \sup_{t \in J} \int_{0}^{\infty} \frac{ds}{1 + t + s^2} \leq \frac{\pi}{2},
\]

and

\[
\int_{0}^{\infty} \left| \frac{1}{1 + t' + s^2} - \frac{1}{1 + t + s^2} \right| ds = \int_{0}^{\infty} \frac{|t' - t|}{(1 + t' + s^2)(1 + t + s^2)} ds \leq \frac{\pi}{2} |t' - t| \to 0
\]
as \(t' \to t \). It is easy to verify the following scalar inequality:

\[
u^\alpha \leq 1 - \alpha + \alpha u, \ 0 \leq u < \infty, \ 0 < \alpha < 1,
\]

so, for \(t \in J, x, y, z \in P \),

\[
|f_n(t, x, y, z)|
\]
\[\leq \frac{e^{-t}}{2^n + 3} (1 + x_n + \frac{1}{2} (x_{n+1} + 2x_{2n+1})) + \frac{e^{-2t}}{3^n} \left(\frac{2}{3} + \frac{1}{5} y_n \right) + \frac{e^{-t}}{4^n} \left(\frac{4}{5} + \frac{1}{5} z_{2n} \right) \]

and therefore,

\[\| f(t, x, y, z) \| = \sum_{n=1}^{\infty} | f_n(t, x, y, z) | \leq e^{-t} \left(\sum_{n=1}^{\infty} \frac{1}{2^n + 3} + \frac{2}{3} \sum_{n=1}^{\infty} \frac{1}{3^n} + \frac{4}{5} \sum_{n=1}^{\infty} \frac{4}{5^n} \right) \]

\[+ e^{-t} \left(\| x \| \sum_{n=1}^{\infty} \frac{1}{2^n + 3} + \frac{1}{3} \| y \| \sum_{n=1}^{\infty} \frac{1}{3^n} + \frac{1}{5} \| z \| \sum_{n=1}^{\infty} \frac{4}{5^n} \right) \]

\[\leq \frac{87}{120} e^{-t} + e^{-t} \left(\frac{1}{8} \| x \| + \frac{1}{6} \| y \| + \frac{1}{15} \| z \| \right) \]

In addition, we have, for \(x \in P, \)

\[| I_{mn}(x) | \leq \frac{1}{2^n + m + 1} \| x \| , \]

and so

\[\| I_m(x) \| = \sum_{n=1}^{\infty} | I_{mn}(x) | \leq \frac{1}{2^n + 1} \| x \| . \]

Hence \((H_2) \) is satisfied for \(p(t) = (87/120) e^{-t}, \quad q(t) = e^{-t}, \quad a = 1/8, \quad b = 1/6, \]

\(c = 1/15, \quad a_m = 0 \quad \text{and} \quad b_m = 1/2^{m+1} \quad (m = 1, 2, 3, \ldots), \)

and therefore \(p^* = 87/120, \quad q^* = 1, \quad a^* = 0 \quad \text{and} \quad b^* = 1/2. \)

On the other hand, \((H_3) \) is obviously satisfied, and

\[r = b^* + (a + bk^* + ch^*) q^* \leq \frac{1}{2} + \left(\frac{1}{8} + \frac{1}{6} + \frac{1}{30} \right) < 1, \]

i.e., (11) holds. Hence the assertion follows from Theorem 1.

\[\square \]

References