We introduce a new class of normalized norms on \mathbb{R}^2 which properly contains all absolute normalized norms. We also give a criterion for deciding whether a given norm in this class is uniformly nonsquare. Moreover, an estimate for the James constant is presented and the exact value of some certain norms is computed. This gives a partial answer to the question raised by Kato et al.

Copyright © 2006 W. Nilsrakoo and S. Saejung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

A norm $\| \cdot \|$ on \mathbb{C}^2 (resp., \mathbb{R}^2) is said to be absolute if $\|(z,w)\| = \|(\|z\|, \|w\|)\|$ for all $z,w \in \mathbb{C}$ (resp., \mathbb{R}), and normalized if $\|(1,0)\| = \|(0,1)\| = 1$. The ℓ_p-norms $\| \cdot \|_p$ are such examples:

$$\|(z,w)\|_p = \begin{cases} (|z|^p + |w|^p)^{1/p} & \text{if } 1 \leq p < \infty, \\ \max\{|z|, |w|\} & \text{if } p = \infty. \end{cases}$$ (1.1)

Let AN_2 be the family of all absolute normalized norms on \mathbb{C}^2 (resp., \mathbb{R}^2), and Ψ_2 the family of all continuous convex functions ψ on $[0,1]$ such that $\psi(0) = \psi(1) = 1$ and $\max\{1-t, t\} \leq \psi(t) \leq 1$ ($0 \leq t \leq 1$). According to Bonsall and Duncan [1], AN_2 and Ψ_2 are in a one-to-one correspondence under the equation

$$\psi(t) = \|(1-t,t)\| \quad (0 \leq t \leq 1).$$ (1.2)

Indeed, for all $\psi \in \Psi_2$, let

$$\|(z,w)\|_\psi = \begin{cases} (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$ (1.3)
The James constant of normalized norms on \mathbb{R}^2

Then $\| \cdot \|_\psi \in AN_2$, and $\| \cdot \|_\psi$ satisfies (1.2). From this result, we can consider many non-ℓ_p-type norms easily. Now let

$$
\psi_p(t) = \begin{cases}
((1-t)^p + t^p)^{1/p} & \text{if } 1 \leq p < \infty, \\
\max\{1-t, t\} & \text{if } p = \infty.
\end{cases}
$$

(1.4)

Then $\psi_p(t) \in \Psi_2$ and, as is easily seen, the ℓ_p-norm $\| \cdot \|_p$ is associated with ψ_p.

If X is a Banach space, then X is uniformly nonsquare if there exists $\delta \in (0, 1)$ such that for any $x, y \in X$,

$$
\text{either } \|x + y\| \leq 2(1 - \delta) \text{ or } \|x - y\| \leq 2(1 - \delta),
$$

(1.5)

where $S_X = \{x \in X : \|x\| = 1\}$. The James constant $J(X)$ is defined by

$$
J(X) = \sup \{\min \{\|x + y\|, \|x - y\|\} : x, y \in S_X\}.
$$

(1.6)

The modulus of convexity of X, $\delta_X : [0, 2] \to [0, 1]$ is defined by

$$
\delta_X(\varepsilon) = \inf \left\{1 - \frac{1}{2}\|x + y\| : x, y \in S_X, \|x - y\| \geq \varepsilon\right\}.
$$

(1.7)

The preceding parameters have been recently studied by several authors (cf. [4–6, 8, 9]). We collect together some known results.

Proposition 1.1. Let X be a nontrivial Banach space, then

(i) $\sqrt{2} \leq J(X) \leq 2$ (Gao and Lau [5]),

(ii) if X is a Hilbert space, then $J(X) = \sqrt{2}$; the converse is not true (Gao and Lau [5]),

(iii) X is uniformly nonsquare if and only if $J(X) < 2$ (Gao and Lau [5]),

(iv) $2J(X) - 2 \leq J(X^*) \leq J(X)/2 + 1$, $J(X^{**}) = J(X)$, and there exists a Banach space X such that $J(X^*) \neq J(X)$ (Kato et al. [8]),

(v) if $2 \leq p \leq \infty$, then $\delta_{\ell_p}(\varepsilon) = 1 - (1 - (\varepsilon/2)^p)^{1/p}$ (Hanner [6]),

(vi) $J(X) = \sup \{\varepsilon \in (0, 2) : \delta_X(\varepsilon) \leq 1 - \varepsilon/2\}$ (Gao and Lau [5]).

The paper is organized as follows. In Section 2 we introduce a new class of normalized norms on \mathbb{R}^2. This class properly contains all absolute normalized norms of Bonsall and Duncan [1]. The so-called generalized Day-James space, $\ell_\psi - \ell_\varphi$, where $\psi, \varphi \in \Psi_2$, is introduced and studied. More precisely, we prove that $(\ell_\psi - \ell_\varphi)^* = \ell_{\psi^*} - \ell_{\varphi^*}$ where ψ^* and φ^* are the dual functions of ψ and φ, respectively. In Section 3, the upper bound of the James constant of the generalized Day-James space is given. Furthermore, we compute $J(\ell_\psi - \ell_\infty)$ and deduce that every generalized Day-James space except $\ell_1 - \ell_1$ and $\ell_\infty - \ell_\infty$ is uniformly nonsquare. This result strengthens Corollary 3 of Saito et al. [10].

2. Generalized Day-James spaces

In this section, we introduce a new class of normalized norms on \mathbb{R}^2 which properly contains all absolute normalized norms of Bonsall and Duncan [1]. Moreover, we introduce a two-dimensional normed space which is a generalization of Day-James $\ell_p - \ell_q$ spaces.
Lemma 2.1. Let $\psi \in \Psi_2$ and let $\| \cdot \|_{\psi,\psi}$ be a function on \mathbb{R}^2 defined by, for all $(z,w) \in \mathbb{R}^2$,

$$
\|(z,w)\|_{\psi,\psi} := \max \{ \|(z^+,w^+)\|_{\psi},\|(z^-,w^-)\|_{\psi} \},
$$

where x^+ and x^- are positive and negative parts of $x \in \mathbb{R}$, that is, $x^+ = \max\{x,0\}$ and $x^- = \max\{-x,0\}$. Then $\| \cdot \|_{\psi,\psi}$ is a norm on \mathbb{R}^2.

For convenience, we put $\mathcal{B}_{\psi_1,\psi_2} := \{(z,w) \in \mathbb{R}^2 : \|(z,w)\|_{\psi_1,\psi_2} \leq 1\}$.

Theorem 2.2. Let $\psi, \varphi \in \Psi_2$ and

$$
\|(z,w)\|_{\psi,\varphi} := \begin{cases} \|(z,w)\|_{\psi} & \text{if } zw \geq 0, \\ \|(z,w)\|_{\varphi} & \text{if } zw \leq 0 \\ \end{cases}
$$

for all $(z,w) \in \mathbb{R}^2$. Then $\| \cdot \|_{\psi,\varphi}$ is a norm on \mathbb{R}^2. Denote by N_2 the family of all such preceding norms.

Proof. Let $\psi, \varphi \in \Psi_2$, we only show $\| \cdot \|_{\psi,\varphi}$ satisfies the triangle inequality. To this end, it suffices to prove that $\mathcal{B}_{\psi,\varphi}$ is convex. By Lemma 2.1, we have that $\mathcal{B}_{\psi,\psi}$ and $\mathcal{B}_{\varphi,\psi}$ are closed unit balls of $\| \cdot \|_{\psi,\psi}$ and $\| \cdot \|_{\psi,\varphi}$, respectively, and so $\mathcal{B}_{\psi,\psi}$ and $\mathcal{B}_{\varphi,\psi}$ are convex sets. We define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$
T((z,w)) = (-z,w) \quad \forall (z,w) \in \mathbb{R}^2.
$$

Then T is a linear operator and $T(\mathcal{B}_{\psi,\psi}) = \mathcal{B}_{\psi,\varphi}$, which implies that $\mathcal{B}_{\psi,\varphi}$ is convex and so $\mathcal{B}_{\psi,\varphi} = \mathcal{B}_{\psi_1,\varphi} \cap \mathcal{B}_{\psi_2,\varphi}$ is convex. \hfill \square

Taking $\psi = \psi_p$ and $\varphi = \psi_q$ ($1 \leq p, q \leq \infty$) in Theorem 2.2, we obtain the following.

Corollary 2.3 (Day-James ℓ_p-ℓ_q spaces). For $1 \leq p, q \leq \infty$, denote by ℓ_p-ℓ_q the Day-James space, that is, \mathbb{R}^2 with the norm defined by, for all $(z,w) \in \mathbb{R}^2$,

$$
\|(z,w)\|_{p,q} := \begin{cases} \|(z,w)\|_p & \text{if } zw \geq 0, \\ \|(z,w)\|_q & \text{if } zw \leq 0. \\ \end{cases}
$$

James [7] considered the ℓ_p-ℓ_p space as an example of a Banach space which is isometric to its dual but which is not given by a Hilbert norm when $p \neq 2$. Day [2] considered even more general spaces, namely, if $(X,\| \cdot \|)$ is a two-dimensional Banach space and $(X^*,\| \cdot \|^*)$ its dual, then the X-X^* space is the space X with the norm defined by, for all $(z,w) \in \mathbb{R}^2$,

$$
\|(z,w)\|_{x,x^*} := \begin{cases} \|(z,w)\| & \text{if } zw \geq 0, \\ \|(z,w)\|^* & \text{if } zw \leq 0. \\ \end{cases}
$$
For $\psi, \varphi \in \Psi_2$, denote by $\ell_{\psi} - \ell_{\varphi}$ the generalized Day-James space, that is, \mathbb{R}^2 with the norm $\| \cdot \|_{\psi, \varphi}$ defined by (2.2). For ψ_p defined by (1.4), we write $\ell_{\psi} - \ell_p$ for $\ell_{\psi} - \ell_{\psi_p}$. For example, if $1 \leq p, q \leq \infty$, $\ell_p - \ell_q$ means $\ell_{\psi_p} - \ell_{\psi_q}$.

It is worthwhile to mention that there is a normalized norm which is not absolute.

Proposition 2.4. There is $\psi \in \Psi_2$ such that $\ell_{\psi} - \ell_{\infty}$ is not isometrically isomorphic to $\ell_{\varphi} - \ell_{\varphi}$ for all $\varphi \in \Psi_2$.

Proof. Let

\[
\psi(t) := \begin{cases}
1 - t & \text{if } 0 \leq t \leq \frac{1}{8}, \\
\frac{11 - 4t}{12} & \text{if } \frac{1}{8} \leq t \leq \frac{1}{2}, \\
\frac{1 + t}{2} & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases}
\]

(2.6)

We observe that the sphere of $\ell_{\psi} - \ell_{\infty}$ is the octagon whose right half consists of 4 segments of different lengths. Suppose that there are $\varphi \in \Psi_2$ and an isometric isomorphism from $\ell_{\psi} - \ell_{\infty}$ onto $\ell_{\varphi} - \ell_{\varphi}$. Since the image of each segment in $\ell_{\psi} - \ell_{\infty}$ is again a segment of the same length in $\ell_{\varphi} - \ell_{\varphi}$, the sphere of $\ell_{\varphi} - \ell_{\varphi}$ must be the octagon whose each corresponding side has the same length (measured by $\| \cdot \|_{\varphi}$). We show that this cannot happen. Consider $(1, 0) \in S_{\ell_{\varphi} - \ell_{\varphi}}$. If $(1, 0)$ is an extreme point of $B_{\ell_{\varphi} - \ell_{\varphi}}$, then $S_{\ell_{\psi} - \ell_{\psi}}$ contains 4 segments of same lengths since $\| \cdot \|_{\varphi}$ is absolute. On the other hand, if $(1, 0)$ is an not extreme point of $B_{\ell_{\varphi} - \ell_{\varphi}}$, again $S_{\ell_{\psi} - \ell_{\psi}}$ contains 4 segments of same lengths. □

Next, we prove that the dual of a generalized Day-James space is again a generalized Day-James space. Recall that, for $\psi \in \Psi_2$, the dual function ψ^* of ψ is defined by

\[
\psi^*(s) = \max_{0 \leq t \leq 1} \frac{(1 - s)(1 - t) + st}{\psi(t)}
\]

for all $s \in [0, 1]$. It was proved that $\psi^* \in \Psi_2$ and $(\ell_{\psi} - \ell_{\psi})^* = \ell_{\psi^*} - \ell_{\psi^*}$ (see [3, Proposition 1 and Theorem 2]). We generalize this result to our spaces as follows.

Theorem 2.5. For $\psi, \varphi \in \Psi_2$, there is an isometric isomorphism that identifies $(\ell_{\psi} - \ell_{\varphi})^*$ with $\ell_{\psi^*} - \ell_{\varphi^*}$ such that if $f \in (\ell_{\psi} - \ell_{\varphi})^*$ is identified with the element $(z, w) \in \ell_{\psi^*} - \ell_{\varphi^*}$, then

\[
f(u, v) = zu + wv
\]

for all $(u, v) \in \mathbb{R}^2$.

Proof. We can prove analogous to [3, Theorem 2]. □

3. The James constant and uniform nonsquareness

The next lemmas are crucial for proving the main theorems.

Lemma 3.1. Let $\psi, \varphi \in \Psi_2$. Then

(i) $\| \cdot \|_{\infty} \leq \| \cdot \|_{\psi, \varphi} \leq \| \cdot \|_1$,
(ii) \((1/M_{\psi,\varphi}) \| \| \psi \leq \| \| \psi, \varphi \leq M_{\psi,\varphi} \| \| \psi, \varphi\)

(iii) \((1/M_{\psi,\varphi}) \| \| \varphi \leq \| \| \varphi, \psi \leq M_{\psi,\varphi} \| \| \varphi, \psi\)

where \(M_{\psi,\varphi} = \max_{0 \leq t \leq 1} \varphi(t)/\psi(t)\) and \(M_{\varphi,\psi} = \max_{0 \leq t \leq 1} \psi(t)/\varphi(t)\).

Lemma 3.2. Let \(\psi, \varphi \in \Psi_2\) and let \(Q_i\) \((i = 1, \ldots, 4)\) denote the \(i\)th quadrant in \(\mathbb{R}^2\). Suppose that \(x, y \in S_{\psi, \epsilon}\), then the following statements are true.

(i) If \(x, y \in Q_1\), then \(x + y \in Q_1\) and \(x - y \in Q_2 \cup Q_4\).

(ii) If \(x, y \in Q_2\), then \(x + y \in Q_2\) and \(x - y \in Q_1 \cup Q_3\).

(iii) If \(\psi(t) \leq \varphi(t)\) for all \(t \in [0, 1]\) and \(x - y \in Q_2^c \cup Q_4^c\), where \(Q_2^c\) and \(Q_4^c\) are the interiors of \(Q_2\) and \(Q_4\), respectively, then \(x + y \in Q_1 \cup Q_3\).

We will estimate the James constant of \(\ell_{\psi, \varphi}\).

Theorem 3.3. Let \(\psi, \varphi \in \Psi_2\) with \(\psi(t) \leq \varphi(t)\) for all \(t \in [0, 1]\), let \(M_{\psi,\varphi} = \max_{0 \leq t \leq 1} \varphi(t)/\psi(t)\), and let \(\delta\) be the modulus of convexity of \(\ell_{\psi, \varphi}\). Then for \(\epsilon \in [0, 2]\),

\[
\delta_{\psi,\varphi}(\epsilon) = \min \left\{1 - M_{\psi,\varphi} (1 - \delta_{\psi,\varphi}(\epsilon)), \delta, \left(\frac{\epsilon}{M_{\psi,\varphi}}\right)\right\},
\]

where \(\delta_{\psi,\varphi}(\cdot)\) is the modulus of convexity of \(\ell_{\psi, \varphi}\). Consequently,

\[
J(\ell_{\psi, \varphi}) \leq \sup \left\{\epsilon \in (0, 2) : \epsilon \leq 2M_{\psi,\varphi} (1 - \delta_{\psi,\varphi}(\epsilon)) \right\}.
\]

Proof. By Lemma 3.1(ii), we have

\[
\| \| \psi \| \psi, \varphi \leq M_{\psi,\varphi} \| \| \psi, \varphi\.
\]

We now evaluate the modulus of convexity \(\delta_{\psi,\varphi}\) for \(\ell_{\psi, \varphi}\). We consider two cases.

Case 1. Take \(\| x \|_{\psi, \varphi} = \| y \|_{\psi, \varphi} = 1\) with \(\| x - y \|_{\psi, \varphi} \geq \epsilon\), where \(x - y \in Q_1 \cup Q_3\). Thus \(\| x \|_{\psi} \leq 1\), \(\| y \|_{\psi} \leq 1\), and \(\| x - y \|_{\psi} \geq \epsilon\), which implies that

\[
\frac{1}{2} \| x + y \|_{\psi} \leq 1 - \epsilon.
\]

This in turn implies

\[
\frac{1}{2} \| x + y \|_{\psi, \varphi} \leq \frac{1}{2} M_{\psi,\varphi} \| x + y \|_{\psi} \leq M_{\psi,\varphi} (1 - \delta_{\psi,\varphi})\)

thus

\[
1 - \frac{1}{2} \| x + y \|_{\psi, \varphi} \geq 1 - M_{\psi,\varphi} (1 - \delta_{\psi,\varphi})\).
\]

Case 2. Now take \(x, y\) as above, but with \(x - y \in Q_2^c \cup Q_4^c\). By Lemma 3.2(iii), \(x + y \in Q_1 \cup Q_3\). Since \(\| x - y \|_{\psi, \varphi} \geq \epsilon\),

\[
\| x - y \|_{\psi} \geq \frac{\| x - y \|_{\psi, \varphi}}{M_{\psi,\varphi}} \geq \frac{\epsilon}{M_{\psi,\varphi}}.
\]
The James constant of normalized norms on \mathbb{R}^2

Then

$$\frac{1}{2} \| x + y \|_{\psi,\varphi} = \frac{1}{2} \| x + y \|_{\psi} \leq 1 - \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right), \quad (3.8)$$

and so

$$1 - \frac{1}{2} \| x + y \|_{\psi,\varphi} \geq \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right). \quad (3.9)$$

Hence we obtain (3.1). By Proposition 1.1(vi), (3.2) follows.

The following corollary shows that we can have equality in (3.2).

Corollary 3.4 [4, 8]. If $1 \leq q \leq p < \infty$ and $p \geq 2$, then

$$J(\ell_p - \ell_q) \leq 2 \left(\frac{2^{p/q}}{2^{p/q} + 2} \right)^{1/p}. \quad (3.10)$$

In particular, if $p = 2$ and $q = 1$, then $J(\ell_2 - \ell_1) = \sqrt{8/3}$.

Proof. It follows that since

$$M_{\psi,\varphi} = 2^{1/q - 1/p}, \quad \delta_{\ell_p - \ell_q}(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right)^{1/p}. \quad (3.11)$$

Moreover, if $p = 2$ and $q = 1$, then $J(\ell_2 - \ell_1) \leq \sqrt{8/3}$. Now we put

$$x_0 = \left(\frac{2 + \sqrt{2}}{2\sqrt{3}}, \frac{2 - \sqrt{2}}{2\sqrt{3}} \right), \quad y_0 = \left(\frac{2 - \sqrt{2}}{2\sqrt{3}}, \frac{2 + \sqrt{2}}{2\sqrt{3}} \right). \quad (3.12)$$

Then

$$\| x_0 \|_{2,1} = \| y_0 \|_{2,1} = 1, \quad \| x_0 \pm y_0 \|_{2,1} = \sqrt{\frac{8}{3}}. \quad (3.13) \quad \square$$

Theorem 3.5. Let $\psi, \varphi \in \Psi_2$ with $\psi(t) \leq \varphi(t)$ for all $t \in [0,1]$, let $M_{\psi,\varphi} = \max_{0 \leq t \leq 1} \varphi(t)/\psi(t)$, and let $\delta_{\psi}(\cdot)$ be the modulus of convexity of $\ell_{\psi} - \ell_{\psi}$. Then for $\varepsilon \in [0,2]$,

$$\delta_{\psi,\varphi}(\varepsilon) \geq 1 - M_{\psi,\varphi} \left(1 - \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right) \right), \quad (3.14)$$

where $\delta_{\psi,\varphi}(\cdot)$ is the modulus of convexity of $\ell_{\psi} - \ell_{\varphi}$. Consequently,

$$J(\ell_{\psi} - \ell_{\varphi}) \leq \sup \left\{ \varepsilon \in (0,2) : \varepsilon \leq 2M_{\psi,\varphi} \left(1 - \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right) \right) \right\}. \quad (3.15)$$

Proof. By Lemma 3.1(iii), we have

$$\frac{1}{M_{\psi,\varphi}} \| \cdot \|_{\psi} \leq \| \cdot \|_{\psi,\varphi} \leq \| \cdot \|_{\varphi}. \quad (3.16)$$
Let \(\| x \|_{\psi,\varphi}, \| y \|_{\psi,\varphi} = \| y \|_{\psi,\varphi} = 1 \) with \(\| x - y \|_{\psi,\varphi} \geq \varepsilon \).

Then
\[
\frac{1}{M_{\psi,\varphi}} \| x \|_{\varphi} \leq 1, \quad \frac{1}{M_{\psi,\varphi}} \| y \|_{\varphi} \leq 1,
\]
\[
\frac{1}{M_{\psi,\varphi}} \| x - y \|_{\varphi} \geq \frac{1}{M_{\psi,\varphi}} \| x - y \|_{\psi,\varphi} \geq \frac{\varepsilon}{M_{\psi,\varphi}},
\]
which implies that
\[
\frac{1}{2M_{\psi,\varphi}} \| x + y \|_{\varphi} \leq 1 - \delta_{\varphi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right).
\]
This in turn implies that
\[
\frac{1}{2M_{\psi,\varphi}} \| x + y \|_{\psi,\varphi} \leq 1 - \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right),
\]
thus
\[
1 - \frac{1}{2} \| x + y \|_{\psi,\varphi} \geq 1 - M_{\psi,\varphi} \left(1 - \delta_{\psi} \left(\frac{\varepsilon}{M_{\psi,\varphi}} \right) \right).
\]
Hence we obtain (3.14). By Proposition 1.1(vi), (3.15) follows. \(\square \)

Corollary 3.6. If \(2 \leq q \leq p < \infty \), then
\[
J(\ell_p - \ell_q) \leq 2^{1 - 1/p}.
\]

It is easy to see that the estimate (3.22) is better than one obtained in [4, Example 2.4(3)].

For some generalized Day-James spaces, [8, Corollary 4] of Kato et al. gives only rough result for the estimate of the James constant, that is, for \(\psi \in \Psi_2 \),
\[
\frac{2}{M} \leq J(\ell_\psi - \ell_\infty) \leq 2M,
\]
where \(M = \max_{0 \leq t \leq 1} \psi_\infty(t)/\psi(t) \).

However, the following theorem gives the exact value of the James constant of these spaces.

Theorem 3.7. Let \(\psi \in \Psi_2 \). Then
\[
J(\ell_\psi - \ell_\infty) = 1 + \frac{1/2}{\psi(1/2)}.
\]
Proof. For our convenience, we write $\| \cdot \|$ instead of $\| \cdot \|_{\psi,\psi}$. Let $x,y \in S_{\ell_\psi-\ell_\infty}$. We prove that

$$\text{either } \| x + y \| \leq 1 + \frac{1/2}{\psi(1/2)} \quad \text{or} \quad \| x - y \| \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.25)$$

Let us consider the following cases.

Case 1. $x,y \in Q_1$. Let $x = (a,b)$ and $y = (c,d)$ where $a,b,c,d \in [0,1]$. By Lemma 3.2(i), we have $x - y \in Q_2 \cup Q_4$. Then

$$\| x - y \| = \max \{|a-c|, |b-d|\} \leq 1 \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.26)$$

Case 2. $x,y \in Q_2$. If x,y lies in the same segment, then $\| x - y \| \leq 1$. We now suppose that $x = (-1,a)$ and $y = (-c,1)$ where $a,c \in [0,1]$.

Subcase 2.1. $a \leq (1/2)/\psi(1/2)$ and $c \leq (1/2)/\psi(1/2)$. Then

$$\| x + y \| = \|(1-c,1+a)\|_\infty = \max\{1+c, 1+a\} \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.27)$$

Subcase 2.2. $a \geq (1/2)/\psi(1/2)$ or $c \geq (1/2)/\psi(1/2)$. Put $z = (-1,1)$, then

$$\| x - y \| \leq \| x - z \| + \| z - y \| = 1 - a + 1 - c \leq 1 + 1 - \frac{1/2}{\psi(1/2)} \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.28)$$

From now on, we may assume without loss of generality that there is $\beta \in [1/2,1]$ such that $\psi(\beta) \leq \psi(t)$ for all $t \in [0,1]$. Indeed, $J(\ell_\psi-\ell_\infty) = J(\ell_\psi-\ell_\infty)$ where $\tilde{\psi}(t) = \psi(1-t)$ for all $t \in [0,1]$.

Case 3. $x \in Q_1$ and $y \in Q_2$. Let $x = (a,b)$, $y = (c,1)$ where $a,b,c \in [0,1]$. We consider three subcases.

Subcase 3.1. $a \leq (1/2)/\psi(1/2)$ or $c \leq (1/2)/\psi(1/2)$. Then

$$\| x - y \| = \|(a+c,b-1)\|_\infty = \max\{a+c, 1-b\} \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.29)$$

Subcase 3.2. $(1/2)/\psi(1/2) \leq a \leq c$. Then $b \leq (1/2)/\psi(1/2)$ and

$$\| x + y \| = \|(a-c,b+1)\|_\infty = \max\{c-a, 1+b\} \leq 1 + \frac{1/2}{\psi(1/2)}. \quad (3.30)$$

Subcase 3.3. $(1/2)/\psi(1/2) < c \leq a$. We write $a = (1-t_0)/\psi(t_0)$, $b = t_0/\psi(t_0)$ where $t_0 = b/(a+b)$ and $0 \leq t_0 \leq 1/2$. By the convexity of ψ and $\psi(t) \geq \psi(\beta)$ for all $0 \leq t \leq 1$, we
have $\psi(t_0) \geq \psi(1/2)$ and so $1/\psi(t_0) \leq 1/\psi(1/2)$. By Lemma 3.1(i),

$$
\|x + y\| = \|(a, b) + (-c, 1)\| \leq \|(a - c, b + 1)\|_1
= a - c + b + 1 = \frac{1}{\psi(t_0)} + 1 - c
\leq \frac{1}{\psi(1/2)} + 1 - \frac{1/2}{\psi(1/2)} = 1 + \frac{1/2}{\psi(1/2)}.
$$

(3.31)

Case 4. Let $x = (a, b), y = (-1, c)$ where $a, b, c \in [0, 1]$. We consider three subcases.

Subcase 4.1. $b \leq (1/2)/\psi(1/2)$ or $c \leq (1/2)/\psi(1/2)$. Then

$$
\|x + y\| = \|(a - 1, b + c)\|_{\infty} = \max\{1 - a, b + c\} \leq 1 + \frac{1/2}{\psi(1/2)}.
$$

(3.32)

Subcase 4.2. $(1/2)/\psi(1/2) < b \leq c$. Then $a \leq (1/2)/\psi(1/2)$ and

$$
\|x - y\| = \|(1 + a, b - c)\|_{\infty} = \max\{1 + a, c - b\} \leq 1 + \frac{1/2}{\psi(1/2)}.
$$

(3.33)

Subcase 4.3. $(1/2)/\psi(1/2) < c \leq b$. We write $a = (1 - t_0)/\psi(t_0)$, $b = t_0/\psi(t_0)$, where $t_0 = b/(a + b)$ and $1/2 \leq t_0 \leq 1$. We choose $\alpha = b/(a + 2b - 1)$, then

$$
\frac{1}{2} \leq \alpha \leq 1, \quad a = \frac{1 - 2\alpha}{\alpha}b + 1.
$$

(3.34)

Since $b - c \leq 1 + a$ and $b \leq 1,$

$$
\frac{b - c}{1 + a + b - c} \leq \frac{1}{2} \leq t_0 \leq \alpha.
$$

(3.35)

Let

$$
\psi_{\alpha}(t) = \begin{cases} \alpha - 1 \frac{t}{t + 1} & \text{if } 0 \leq t \leq \alpha, \\ \frac{t}{1} & \text{if } \alpha \leq t \leq 1. \end{cases}
$$

(3.36)

We see that $\psi_{\alpha}(t_0) = \psi(t_0).$ By the convexity of ψ, we have

$$
\psi(t) \leq \psi_{\alpha}(t) \quad \forall t \leq t_0.
$$

(3.37)
Therefore, \[
\|x - y\| = \|(a + 1, b - c)\|_\psi = (1 + a + b - c)\psi\left(\frac{b - c}{1 + a + b - c}\right)
\]
\[\leq (1 + a + b - c)\psi(\alpha)\left(\frac{\alpha - 1}{\alpha}b - \frac{\alpha - 1}{\alpha}c\right) = 1 + a + \frac{\alpha - 1}{\alpha}b - \frac{\alpha - 1}{\alpha}c = 1 + 1 - \frac{2\alpha - 1}{\alpha}c
\]
\[< 1 + 1 - \frac{2\alpha - 1}{\alpha}c \frac{1}{\psi(1/2)} = 1 + \frac{1}{\psi(1/2)} + 1 - \frac{3\alpha - 1}{2\alpha} \frac{1}{\psi(1/2)}
\]
\[= 1 + \frac{1}{\psi(1/2)} + 1 - \frac{\psi(1/2)(1/2)}{\psi(1/2)} \leq 1 + \frac{1}{\psi(1/2)}.
\] (3.38)

Finally, we conclude that
\[
J(\ell_\psi - \ell_\infty) \leq 1 + \frac{1/2}{\psi(1/2)}.
\] (3.39)

Now, we put \(x_0 = ((1/2)/\psi(1/2), (1/2)/\psi(1/2))\) and \(y_0 = (-1, 1)\), then
\[
\|x_0\| = \|y_0\| = 1, \quad \|x_0 \pm y_0\| = 1 + \frac{1/2}{\psi(1/2)}.
\] (3.40)

Thus,
\[
J(\ell_\psi - \ell_\infty) \geq \min\{\|x_0 - y_0\|, \|x_0 + y_0\|\} = 1 + \frac{1/2}{\psi(1/2)}.\] (3.41)

This together with (3.39) completes the proof. \(\Box\)

Corollary 3.8 [4, Example 2.4(2)]. Let \(1 \leq p \leq \infty\), then
\[
J(\ell_p - \ell_\infty) = 1 + \left(\frac{1}{2}\right)^{1/p}.
\] (3.42)

Indeed, \(\psi_p(1/2) = 2^{1/p-1}\).

We now obtain the bounds for \(J(\ell_\psi - \ell_1)\).

Corollary 3.9. Let \(\psi \in \Psi_2\). Then
\[
2 \min_{0 \leq t \leq 1} \psi(t) \leq J(\ell_\psi - \ell_1) \leq \frac{3}{2} + \frac{1}{2} \min_{0 \leq t \leq 1} \psi(t).
\] (3.43)

Proof. Note that \(\psi^*(1/2) = \max_{0 \leq t \leq 1}(1/2)/\psi(t) = 1/2 \min_{0 \leq t \leq 1} \psi(t)\). By Theorem 3.7, we have \(J(\ell_\psi - \ell_\infty) = 1 + \min_{0 \leq t \leq 1} \psi(t)\). Applying Proposition 1.1(iv), the assertion is obtained. \(\Box\)

We now improve the upper bound for \(J(\ell_p - \ell_1)\) (see also Corollary 3.4).
Corollary 3.10. Let \(1 \leq p < \infty \). Then
\[
J(\ell_p - \ell_1) \leq \frac{3}{2} + \left(\frac{1}{2} \right)^{2-1/p}.
\] (3.44)

In particular, if \(p \geq 2 \), then
\[
J(\ell_p - \ell_1) \leq \min \left\{ \frac{4}{(2p + 2)^{1/p}}, \frac{3}{2} + \left(\frac{1}{2} \right)^{2-1/p} \right\}.
\] (3.45)

The following corollary follows by Theorem 3.7 and Corollary 3.9.

Corollary 3.11. Let \(\psi \in \Psi_2 \). Then

(i) \(\ell_\psi - \ell_\infty \) is uniformly nonsquare if and only if \(\psi \neq \psi_\infty \),

(ii) \(\ell_\psi - \ell_1 \) is uniformly nonsquare if and only if \(\psi \neq \psi_1 \).

We can say more about the uniform nonsquareness of \(\ell_\psi - \ell_\varphi \).

Theorem 3.12. Let \(\psi, \varphi \in \Psi_2 \). Then all \(\ell_\psi - \ell_\varphi \) except \(\ell_1 - \ell_1 \) and \(\ell_\infty - \ell_\infty \) are uniformly nonsquare.

Proof. If \(\psi = \varphi \), we are done by [10, Corollary 3]. Assume that \(\psi \neq \varphi \). We prove that \(\ell_\psi - \ell_\varphi \) is uniformly nonsquare. Suppose not, that is, there are \(x, y \in S_{\ell_\psi - \ell_\varphi} \) such that \(\|x + y\|_{\psi, \varphi} = 2 \). We consider three cases.

Case 1. \(x, y \in Q_1 \). Then
\[
\|x\|_{\psi, 1} = \|x\|_{\psi} = \|x\|_{\psi, \varphi} = 1,
\]
\[
\|y\|_{\psi, 1} = \|y\|_{\psi} = \|y\|_{\psi, \varphi} = 1.
\] (3.46)

It follows by Lemma 3.2(i) that \(x + y \in Q_1 \) and \(x - y \in Q_2 \cup Q_4 \). Therefore
\[
\|x + y\|_{\psi, 1} = \|x + y\|_{\psi, \varphi} = 2,
\]
\[
2 = \|x - y\|_{\psi, \varphi} \leq \|x - y\|_1 = \|x - y\|_{\psi, 1} \leq 2.
\] (3.47)

Hence \(\|x + y\|_{\psi, 1} = 2 \) and this implies that \(\ell_\psi - \ell_1 \) is not uniformly nonsquare. By Corollary 3.11(ii), we have \(\psi = \psi_1 \). Again, since \(\ell_\psi - \ell_\varphi = \ell_1 - \ell_\varphi \) is not uniformly nonsquare, \(\varphi = \psi_1 = \psi \); a contradiction.

Case 2. \(x, y \in Q_2 \). It is similar to Case 1, so we omit the proof.

Case 3. \(x := (a, b) \in Q_1 \) and \(y := (-c, d) \in Q_2 \) where \(a, b, c, d \in [0, 1] \). Since \(\|x + y\|_{\psi, \varphi} = 2 \), the line segment joining \(x \) and \(y \) must lie in the sphere. In particular, there is \(\alpha \in [0, 1] \) such that
\[
(0, 1) = \alpha x + (1 - \alpha)y.
\] (3.48)

It follows that \(b = 1 \) since \(b, d \leq 1 \). Similarly consider \(x \) and \(-y \) instead of \(x \) and \(y \), we can also conclude that \(a = 1 \). Hence \(\|(1, 1)\|_{\psi} = \|(1, 1)\|_{\psi, \varphi} = 1 \), that is, \(\psi(1/2) = 1/2 \). Then \(\psi = \psi_\infty \) and so \(\ell_\psi - \ell_\varphi = \ell_\infty - \ell_\varphi \) is not uniformly nonsquare. By Corollary 3.11(i), we have \(\varphi = \psi_\infty = \psi \); a contradiction. \(\square \)
The James constant of normalized norms on \mathbb{R}^2

Acknowledgments

The authors would like to thank the referee for suggestions which led to a presentation of the paper. The second author was supported by the Thailand Research Fund under Grant BRG 4780013.

References

Weerayuth Nilsrakoo: Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

Current address: Department of Mathematics, Statistics and Computer, Ubon Rajathanee University, Ubon Ratchathani 34190, Thailand

E-mail address: nweerayuth@sci.ubu.ac.th

Satit Saejung: Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

E-mail address: saejung@kku.ac.th