Research Article
Note on q-Nasybullin’s Lemma Associated with the Modified p-Adic q-Euler Measure

Taekyun Kim, Young-Hee Kim, Lee-Chae Jang, Seog-Hoon Rim, and Byungje Lee
1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, South Korea
2 Department of Mathematics and Computer Science, KonKuk University, Chungju 380-701, South Korea
3 Department of Mathematics Education, Kyungpook National University, Taegu 702-701, South Korea
4 Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, South Korea

Correspondence should be addressed to Young-Hee Kim, yhkim@kw.ac.kr

Received 1 December 2009; Accepted 14 March 2010

Copyright © 2010 Taekyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive the modified p-adic q-measures related to q-Nasybullin’s type lemma.

1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols \mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p denote the ring of rational integers, the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. The p-adic absolute value in \mathbb{C}_p is normalized in such a way that $|p|_p = 1/p$ (see [1–17]). For $f \in \mathbb{N}$ with $f \equiv 1 \pmod{2}$, let $\overline{f} = [f, p]$ be the least common multiple of f and p. We set

$\mathbb{Z}_{\overline{f}} = \lim_{n \to \infty} \frac{\mathbb{Z}}{\overline{f} \mathbb{Z}^{(n)}} \quad \text{for} \quad n \geq 0,$

$\mathbb{Z}_{\overline{f}}^* = \bigcup_{0 \leq a < \overline{f}} (a + \overline{f} \mathbb{Z}_p)^p = \bigcup_{0 \leq a < \overline{f}} \left\{ (a + \overline{f} \mathbb{Z}_p) \right\} = \bigcup_{0 \leq a < \overline{f}} \left\{ x \in \mathbb{Z}_{\overline{f}} \mid x \equiv a \pmod{\overline{f} \mathbb{Z}_p} \right\},$ \hspace{1cm} (1.1)

where $a \in \mathbb{Z}$ lies in $0 \leq a < \overline{f}$.
When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$ with $|1 - q|_p < 1$ (see [1–6, 18–23]). As the definition of q-number, we use the following notations:

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}$$

(see [1–23]).

Let $\text{UD}(\mathbb{Z}_p)$ be the space of uniformly differentiable function on \mathbb{Z}_p. For $f \in \text{UD}(\mathbb{Z}_p)$, the p-adic q-invariant integral on \mathbb{Z}_p is defined as

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1 + q}{1 + q^{N}} \sum_{x=0}^{pN-1} f(x)(-q)^x$$

(see [2, 3]).

The q-Euler numbers, $\varepsilon_{n,q}$, can be determined inductively by

$$\varepsilon_{0,q} = 1, \quad q(qe + 1)^n + \varepsilon_{n,q} = \begin{cases} [2]_q & \text{if } n = 0, \\ 0 & \text{if } n > 0, \end{cases}$$

with the usual convention of replacing e^i by $e_{i,q}$ (see [11]). The modified q-Euler numbers $E_{n,q}$ of $\varepsilon_{n,q}$ are defined in [2] as follows:

$$E_{0,q} = \frac{[2]_q}{2}, \quad (qe + 1)^n + E_{n,q} = \begin{cases} [2]_q & \text{if } n = 0, \\ 0 & \text{if } n > 0, \end{cases}$$

with the usual convention of replacing E^i by $E_{i,q}$. For any positive integer N,

$$\mu_q(a + fpN\mathbb{Z}_p) = \frac{(-q)^a}{[fpN]_q}$$

is known as a measure on \mathbb{Z}_q (see [9]). In [2], the Witt’s type formulas for $E_{n,q}$ are given by

$$E_{n,q} = \int_{\mathbb{Z}_p} q^{-x} [x]_q^n d\mu_q(x) = [2]_q \frac{1}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1 + q}.$$

The modified q-Euler polynomials are also defined by

$$E_{n,q}(x) = \left([x]_q + q^x E\right)^n = \sum_{l=0}^{n} \binom{n}{l} E_{l,q} q^{lx} [x]_q^{n-l},$$
with the usual convention of replacing E^n by $E_{n,q}$ (see [2]). Thus, we note that

$$E_{n,q}(x) = \int_{\mathbb{Z}_p} q^{-t} [x + t]_q^n d\mu_q(t) = [2]_q \frac{1}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{q^{lx}}{1 + q^l}. \quad (1.9)$$

Recently Govil and Gupta [22] have introduced a new type of q-integrated Meyer-König-Zeller-Durrmeyer (q-MKZD) operators, obtained moments for these operators, and estimated the convergence of these integrated q-MKZD operators. In this paper, we consider the q-extension which is in a direction different than that of Govil and Gupta [22].

Let K be a field over \mathbb{Q}_p. Then we call a function μ a K-measure on \mathbb{Z}_f^* if μ is finitely additive function defined on open-closed subsets in \mathbb{Z}_f^* whose values are in the field K. Any open-closed subset in \mathbb{Z}_f^* is a disjoint union of some finite intervals $I_{a,n} = a + p^n \mathbb{Z}_p$ in \mathbb{Z}_f^*, where $a \in \mathbb{Z}$ is prime to f, and therefore a K-measure μ is determined by its values on all intervals in \mathbb{Z}_f^*. Let $Q(I)$ denote the set of all rational numbers, whose denominator is a divisor of fp^n for some $n \geq 0$. In Section 2, we derive the modified p-adic q-measures related to q-Nasybullin’s type lemma.

2. The Modified p-Adic q-Measure

Let T be a K-valued function defined on $Q(I)$ with the following property.

There exist two constants $A, B \in K$ such that

$$\sum_{k=0}^{p-1} T \left(\left[\frac{x + k}{p} \right]_q \right)(-1)^k = AT \left([x]_q \right) + BT \left([px]_{q^{1/p}} \right), \quad (2.1)$$

$$T \left([x + 1]_q \right) = T \left([x]_q \right),$$

for any number $x \in Q(I)$. Suppose that ρ is a root of the equation $y^2 = Ay + Bp$. Then we define

$$\mu(I_{a,n}) = \rho^{-n}(-1)^a T \left(\left[\frac{a}{p^n f} \right]_{q^{n+1}} \right) + B\rho^{-(n+1)}(-1)^a T \left(\left[\frac{a}{p^{n+1} f} \right]_{q^{n+1}} \right), \quad (2.2)$$
for any interval $I_{a,n}$. From (2.2), we note that

$$\sum_{k=0}^{p-1} \mu(I_{a+p^nf_k,n+1})$$

$$= p^{-n} \sum_{k=0}^{p-1} \left(\frac{a + p^nf_k}{p^{n+1}f} \right) q_{n+1} (-1)^{a+k} + B \rho^{-n} \sum_{k=0}^{p-1} \left(\frac{a + p^nf_k}{p^{n+1}f} \right) q_{n+1} (-1)^k$$

$$= p^{-n} (-1)^a \sum_{k=0}^{p-1} \left(\frac{k+a/p^{n+1}f}{p} \right) q_{n+1} (-1)^k + B \rho^{-n} (-1)^a \sum_{k=0}^{p-1} \left(\frac{a}{p^{n+1}f} + k \right) q_{n+1} (-1)^k$$

$$= p^{-n} (-1)^a AT \left(\frac{a}{p^{n+1}f} q_{n+1} \right) + B \rho^{-n} (-1)^a pT \left(\frac{a}{p^{n+1}f} q_{n+1} \right)$$

$$+ B \rho^{-n} (-1)^a T \left(\frac{a}{p^{n+1}f} q_{n+1} \right)$$

$$= p^{-n} (-1)^a (\rho A + Bp) T \left(\frac{a}{p^{n+1}f} q_{n+1} \right) + B \rho^{-n} (-1)^a T \left(\frac{a}{p^{n+1}f} q_{n+1} \right)$$

$$= \mu(I_{a,n}).$$

Thus, we have

$$\mu(I_{a,n}) = \sum_{b \equiv a \pmod{p^{n+1}}} \mu(I_{b,n+1}).$$

Therefore we obtain the following theorem.

Theorem 2.1. For $f \in \mathbb{N}$ with $f \equiv 1 \pmod{2}$ and $\bar{f} = [p, f]$, let T be a K-valued function defined on $Q^{(f)}$ with the following properties.

There exist two constants $A, B \in K$ such that

$$\sum_{k=0}^{p-1} T \left(\frac{x+k}{p} \right) q_f (-1)^k = AT \left([x]_q \right) + BT \left([p x] q^{1/p} \right),$$

$$T \left([x+1]_q \right) = T \left([x]_q \right),$$

(2.5)
for any \(x \in Q^1 \). Suppose that \(\rho \) is a root of the equation \(y^2 = Ay + Bp \). Then there exists a \(K(\rho) \)-measure \(\mu \) on \(\mathbb{Z}_p^* \) such that

\[
\mu(I_{a,n}) = \rho^{-n}(1)^{a}T\left(\left[\frac{a}{p^n}\right]_{q^m}\right) + Bp^{-m(1+1)}(1)^{a}T\left(\left[\frac{a}{p^{n-1}q}\right]_{q^m}\right),
\]

for any interval \(I_{a,n} \).

From (1.9), we note that

\[
E_{n,q}(x) = \left[p\right]_q^m \sum_{a=0}^{p-1} (-1)^a E_{n,q}\left(\frac{x + a}{p}\right).
\]

Let \(E_{m,q}(x) \) be the \(m \)th \(q \)-Euler polynomials and let \(P_m([x]_q) \) be the \(m \)th \(q \)-Euler functions, that is, for \(0 \leq x < 1 \),

\[
P_m([x]_q) = E_{m,q}(x).
\]

Note that \(\lim_{q \to 1} P_m([x]_q) = P_m(x) \) is the Euler function. By (2.7), we see that

\[
\frac{[2]_q}{[2]_{q^m}} \sum_{a=0}^{p-1} (-1)^a P_m\left(\left[\frac{x + i}{p}\right]_{q^m}\right) = P_m([x]_q).
\]

Thus, the \(q \)-Euler function \(P_m([x]_q) \) satisfies the properties of Theorem 2.1 with constants

\[
A = \left[p\right]_q^{-m} \frac{[2]_{q^m}}{[2]_q}, \quad B = 0.
\]

Then \(\rho \neq 0 \) is equal to \(\left[p\right]_q^{-m}(2)_{q^m} \), as \(\rho^2 = Ap + Bp \) reduces simply to \(\rho^2 = \left[p\right]_{q^m}^{-m}(2)_{q^m} \cdot \rho \). Therefore, we obtain the following theorem.

Theorem 2.2. For \(m \in \mathbb{Z}_+ \), let the function \(\mu_m = \mu_{m,q} \) be defined on \(I_{a,n} \) as follows:

\[
\mu_m(I_{a,n}) = \left[fp^m\right]_q^m \left[\frac{a}{p^n}\right]_{q^m}(1)^{a}P_m\left(\left[\frac{a}{p^n}\right]_{q^m}\right).
\]

Then \(\mu_m \) is a \(Q_p(q) \)-measure on \(\mathbb{Z}_p^* \)
For \(f \in \mathbb{N} \) with \(f \equiv 1 \pmod{2} \) and \(\overline{f} = [f, p] \), let \(\chi \) be a primitive Dirichlet character modulo \(\overline{f} \). Then the generalized \(q \)-Euler numbers are defined as follows:

\[
E_{n, \chi, q} = [\overline{f}]_q^n \sum_{a=0}^{\overline{f}-1} \chi(a)(-1)^a E_{n, q, \overline{f}} \left(\frac{a}{\overline{f}} \right). \tag{2.12}
\]

From (2.12) and (2.7), we can easily derive the following Witt’s formula:

\[
E_{n, \chi, q} = \int_{\mathbb{Z}/\overline{f}} [x]^n q^{-x} \chi(x) d\mu_q(x)
\]

\[
= \left[d \right]_q^n [\overline{f}]_q^{\overline{f}-1} \sum_{a=0}^{\overline{f}-1} \chi(a)(-1)^a \int_{\mathbb{Z}/\overline{f}} \left[\frac{a}{\overline{f}} + x \right] q^{-d} d\mu_q(x)
\]

\[
= \left[\overline{f} \right]_q^n [\overline{f}]_q^{\overline{f}-1} \sum_{a=0}^{\overline{f}-1} \chi(a)(-1)^a E_{n, q, \overline{f}} \left(\frac{a}{\overline{f}} \right). \tag{2.13}
\]

We can compute a \(q \)-analog of the \(p \)-adic \(q \)-function by the following \(p \)-adic \(q \)-Mellin Mazur transform with respect to \(\mu_m \).

Let

\[
L(\mu_m, \chi) = \int_{\mathbb{Z}/\overline{f}} \chi(a) d\mu_m(a)
\]

\[
= \lim_{\rho \to \infty} \sum_{a \equiv (a) \pmod{\overline{f}} \atop a \in \mathbb{Z}, (a, p) = 1} \chi(a) \mu_m(I_{a, \rho}). \tag{2.14}
\]

Since the character \(\chi \) is constant on the interval \(I_{a,0} \),

\[
L(\mu_m, \chi) = \sum_{a \equiv (a) \pmod{\overline{f}} \atop (a, p) = 1} \chi(a) \mu_m(I_{a,0})
\]

\[
= \sum_{a \equiv (a) \pmod{\overline{f}} \atop (a, p) = 1} \chi(a) \left[\frac{\overline{f}}{q} \right]_q^m \left[\frac{a}{\overline{f}} \right] q^a \left(\frac{P_m \left(\frac{a}{\overline{f}} \right)}{q^a} \right) \tag{2.15}
\]

\[
= E_{m, \chi, q} - \chi(p) \left[\frac{\overline{f}}{q} \right]_q^m \left[p \right] q^m E_{m, \chi, q^p}.
\]
where $E_{m,\chi,q}$ are the mth generalized q-Euler numbers attached to χ. For $m \in \mathbb{Z}_+$, we have

$$L(\mu_m, \chi w^{-m}) = E_{m,\chi w^{-m},q} - \chi w^{-m}(p) \frac{[2]_q}{[2]_q^p} [p]_q^m E_{m,\chi w^{-m},q}$$

$$= l_{p,q}(-m, \chi).$$

Assume that $q \in \mathbb{C}_p$ with $|1-q|_p < p^{-1/(p-1)}$. Let ω be the Teichmüller character mod p. For $x \in \mathbb{Z}_p^\times$ we set $(x)_q = [x]_q / \omega(x)$. Note that $|(x)_q - 1|_p < p^{-1/(p-1)}$ and $(x)_q^s$ are defined by $\exp(s \log_p (x)_q)$ for $|s|_p \leq 1$. For $s \in \mathbb{Z}_p$, we define

$$l_{p,q}(s,x) = \int_{\mathbb{Z}_p^\times} (x)_q^s \chi(x) d\mu_q(x).$$

For (2.14), (2.16) and (2.17), we note that

$$l_{p,q}(-k, \chi w^k) = \int_{\mathbb{Z}_p^\times} [x]^k q \chi(x) d\mu_q(x) = \int_{\mathbb{Z}_p^\times} \chi(x) d\mu_k(x).$$

Since $|(x)_q - 1|_p < p^{-1/(p-1)}$ for $x \in \mathbb{Z}_p^\times$, we have $(x)_q^p \equiv 1 \pmod{p^n}$. Let $k \equiv k'(\pmod{p^n(p-1)})$. Then we have

$$l_{p,q}(-k, \chi w^k) \equiv l_{p,q}(-k', \chi w^k) \pmod{p^n}.$$

Therefore, we obtain the following theorem.

Theorem 2.3. For $k \equiv k'(\pmod{p^n(p-1)})$, we have

$$L(\mu_k, \chi) \equiv L(\mu_{k'}, \chi) \pmod{p^n}.$$

References

