Some Properties of Orthogonal Polynomials for Laguerre-Type Weights

HeeSun Jung\(^1\) and Ryozi Sakai\(^2\)

\(^1\) Department of Mathematics Education, Sungkyunkwan University, Seoul 110-745, Republic of Korea
\(^2\) Department of Mathematics, Meijo University, Nagoya 468-8502, Japan

Correspondence should be addressed to HeeSun Jung, hsun90@skku.edu

Received 3 November 2010; Accepted 21 February 2011

1. Introduction and Main Results

Let \(\mathbb{R}^+ = [0, \infty) \), let \(R : \mathbb{R}^+ \to \mathbb{R}^+ \) be a continuous, nonnegative, and increasing function, and let \(p_{n,p}(x) \) be the orthonormal polynomials with the weight \(w_p(x) = x^p e^{-R(x)}, p > -1/2 \). For the zeros \(\{x_{kn,\rho}\}_{k=1}^n \) of \(p_{n,\rho}(x) = p_n(w_{\rho}; x) \), we estimate \(p_{n,p}(x_{kn,\rho}) \), where \(j \) is a positive integer. Moreover, we investigate the various weighted \(L_p \)-norms \((0 < p \leq \infty) \) of \(p_{n,\rho}(x) \).

We say that \(f : \mathbb{R} \to \mathbb{R}^+ \) is quasi-increasing if there exists \(C > 0 \) such that \(f(x) \leq Cf(y) \) for \(0 < x < y \). The notation \(f(x) \sim g(x) \) means that there are positive constants \(C_1, C_2 \) such that for the relevant range of \(x \), \(C_1 \leq f(x)/g(x) \leq C_2 \). The similar notation is used for sequences and sequences of functions.

Throughout, \(C_1, C_2, C_3, \ldots \) denote positive constants independent of \(n, x, t \). The same symbol does not necessarily denote the same constant in different occurrences. We denote the class of polynomials with degree \(n \) by \(P_n \).

First, we introduce some classes of weights.

Levin and Lubinsky \([1,2]\) introduced the class of weights on \(\mathbb{R}^+ \) as follows. Let \(I = [0, d) \), where \(0 < d \leq \infty \).
We assume that $R : I \rightarrow [0, \infty)$ has the following properties. Let $Q(t) = R(t^2)$,

(a) $\sqrt{x}R(x)$ is continuous in I, with limit 0 at 0 and $R(0) = 0$,

(b) $R'(x)$ exists in $(0, d)$, while $Q''(t)$ is positive in $(0, \sqrt{d})$,

(c)
\[
\lim_{x \to d^-} R(x) = \infty;
\]

(d) the function
\[
T(x) := \frac{xR'(x)}{R(x)}
\]

is quasi-increasing in $(0, d)$, with
\[
T(x) \geq \Lambda > \frac{1}{2}, \quad x \in (0, d);
\]

(e) there exists $C_1 > 0$ such that
\[
\frac{|R''(x)|}{R'(x)} \leq C_1 \frac{R'(x)}{R(x)}, \quad \text{a.e. } x \in (0, d).
\]

Then, we write $w \in \mathcal{L}(C^2)$. If there also exists a compact subinterval $J^* \ni 0$ of $I^* = (-\sqrt{d}, \sqrt{d})$, and $C_2 > 0$ such that
\[
\frac{Q''(t)}{|Q'(t)|} \geq C_2 \frac{|Q'(t)|}{Q(t)}, \quad \text{a.e. } t \in I^* \setminus J^*,
\]

then we write $w \in \mathcal{L}(C^{2+})$.

We consider the case $d = \infty$, that is, the space $\mathbb{R}^+ = [0, \infty)$, and we strengthen Definition 1.1 slightly.

Definition 1.2. We assume that $R : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ has the following properties:

(a) $R(x), R'(x)$ are continuous, positive in \mathbb{R}^+, with $R(0) = 0, R'(0) = 0$,

(b) $R''(x) > 0$ exists in $\mathbb{R}^+ \setminus \{0\}$,

(c)
\[
\lim_{x \to \infty} R(x) = \infty;
\]

(d) the function
Journal of Inequalities and Applications

\[T(x) := \frac{xR'(x)}{R(x)} \] \hspace{1cm} (1.7)

is quasi-increasing in \(\mathbb{R}^+ \setminus \{0\} \), with

\[T(x) \geq A > \frac{1}{2}, \quad x \in \mathbb{R}^+ \setminus \{0\}, \] \hspace{1cm} (1.8)

(e) there exists \(C_1 > 0 \) such that

\[\frac{R''(x)}{R'(x)} \leq C_1 \frac{R'(x)}{R(x)}, \quad \text{a.e. } x \in \mathbb{R}^+ \setminus \{0\}. \] \hspace{1cm} (1.9)

There exists a compact subinterval \(J \ni 0 \) of \(\mathbb{R}^+ \), and \(C_2 > 0 \) such that

\[\frac{R''(x)}{R'(x)} \geq C_2 \frac{R'(x)}{R(x)}, \quad \text{a.e. } x \in \mathbb{R}^+ \setminus J, \] \hspace{1cm} (1.10)

then we write \(w \in \mathcal{L}_2 \).

Let us consider the weight \(w \in \mathcal{L}(C^2+) \) in Definition 1.2. Levin and Lubinsky [2, Theorem 1.3] have given the following theorem.

Theorem A (see [3, Theorem 1.3]). Let \(w \in \mathcal{L}(C^2+) \) and \(\rho > -1/2 \). There exists \(n_0 \) such that uniformly for \(n \geq n_0 \), \(1 \leq j \leq n \),

\[\left| p_{n,\rho} \cdot \varphi_j \right| (x_{jn}) \sim q_n(x_{jn})^{-1} \left[x_{jn} (a_n - x_{jn}) \right]^{-1/4}. \] \hspace{1cm} (1.11)

Now, we will estimate the higher-order derivatives of the orthonormal polynomials \(p_n(w_{\rho}^2; x) \). However, we need to focus on a smaller class of weights.

Definition 1.3. Let \(w = \exp(-R) \in \mathcal{L}_2 \) and \(\nu \geq 2 \) be an integer. For the exponent \(R \), we assume the following:

(a) \(R^{(j)}(x) > 0, \) for \(0 \leq j \leq \nu \) and \(x > 0 \), and \(R^{(j)}(0) = 0, \) \(0 \leq j \leq \nu - 1 \).

(b) there exist positive constants \(C_i > 0 \) such that for \(i = 1, 2, \ldots, \nu - 1 \)

\[R^{(i+1)}(x) \leq C_i R^{(i)}(x) \frac{R'(x)}{R(x)}, \quad \text{a.e. } x \in \mathbb{R}^+ \setminus \{0\}, \] \hspace{1cm} (1.12)

(c) there exist positive constants \(C, 0 < c_1 \leq 1 \) and \(0 \leq \delta < 1 \) such that for \(x \in (0, c_1) \)

\[R^{(\nu)}(x) \leq C \left(\frac{1}{x} \right)^{\delta}, \] \hspace{1cm} (1.13)
(d) there exists $c_2 > 0$ such that we have one among the following:

\begin{align}
&\text{(d1)} \ T(x)/\sqrt{\pi} \ \text{is quasi-increasing on} \ (c_2, \infty), \\
&\text{(d2)} \ R^{(r)}(x) \ \text{is nondecreasing on} \ (c_2, \infty).
\end{align}

Then, we write $w(x) = e^{-R(x)} \in \tilde{\mathcal{L}}_\nu$.

Example 1.4 (see [1, 4]). Let $\nu \geq 2$ be a fixed integer. There are some typical examples satisfying all conditions of Definition 1.3 constructed as follows: let $\alpha > 1$, $l \geq 1$, where l is an integer. Then, we define

\[R_{l, \alpha}(x) = \exp(x^\alpha) - \exp(0), \quad (1.14) \]

where $\exp(x) = \exp(\exp(\exp(\cdots \exp(x) \cdots))$ is the lth iterated exponential.

1. When $\alpha > \nu$, we consider $w(x) = e^{-R_{l, \alpha}(x)}$, then $w \in \tilde{\mathcal{L}}_\nu$.
2. When $\alpha \leq \nu$, α is an integer, we define

\[R_{l, \alpha}(x) = \exp(|x|^\alpha) - \exp(0) - \sum_{j=1}^{r} \frac{R^{(j)}_{l, \alpha}(0)}{j!} x^j. \quad (1.15) \]

Then, $w(x) = e^{-R_{l, \alpha}(x)} \in \tilde{\mathcal{L}}_\nu$.

In the rest of this paper, we consider the classes \mathcal{L}_2 and $\tilde{\mathcal{L}}_\nu$, let $w \in \mathcal{L}_2$ or $w \in \tilde{\mathcal{L}}_\nu$ $(\nu \geq 2)$. For $\rho > -1/2$, we set $w_\rho(x) := x^\rho w(x)$. Then, we can construct the orthonormal polynomials $p_{n, \rho}(x) = p_n(w^2_\rho; x)$ of degree n with respect to $w^2_\rho(x)$. That is,

\[\int_{0}^{\infty} p_{n, \rho}(u)p_{m, \rho}(u)w^2_\rho(u)du = \delta_{nm} \quad \text{(Kronecker’s delta)} \quad n, m = 0, 1, 2, \ldots. \quad (1.16) \]

Let us denote the zeros of $p_{n, \rho}(x)$ by

\[0 < x_{n, n, \rho} < \cdots < x_{2, n, \rho} < x_{1, n, \rho} < \infty. \quad (1.17) \]

The Mhaskar-Rahmanov-Saff numbers a_v are defined as follows:

\[v = \frac{1}{\pi} \int_{0}^{1} a_v t R(a_v t)(t(1 - t))^{-1/2}dt, \quad v > 0. \quad (1.18) \]

In this paper, we will consider the orthonormal polynomials $p_{n, \rho}(x)$ with respect to the weight class $\tilde{\mathcal{L}}_\nu$. Our main themes in this paper are to estimate the higher-order derivatives of $p_{n, \rho}(x)$ at the zeros of $p_{n, \rho}(x)$ and to investigate the various weighted L_p-norms $(0 < p \leq \infty)$ of $p_{n, \rho}(x)$. More precisely, we will estimate the higher-order derivatives of $p_{n, \rho}(x)$ at all zeros of $p_{n, \rho}(x)$ for two cases of an odd order and of an even order. In addition, we will give
asymptotic relation of the odd order derivatives of $p_{n,\rho}(x)$ at the zeros of $p_{n,\rho}(x)$ in a certain finite interval. These estimations will play an important role in investigating convergence or divergence of higher-order Hermite-Fejér interpolation polynomials (see [3, 5–17]).

Then, our main purpose is to obtain estimations with respect to $p_{n,\rho}^{(j)}(x_{k,n,\rho})$, $k = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \nu$ as follows.

Theorem 1.5. Let $w(x) = \exp(-R(x)) \in \mathcal{L}(C^2)$ and $\rho > -1/2$. For each $k = 1, 2, \ldots, n$ and $j = 0, 1, \ldots, \nu - 1$ one has

$$
\left| p_{n,\rho}^{(j)}(x_{k,n,\rho}) \right| \leq C \left(\frac{n}{\sqrt{2\pi}} \right)^{j-1} x_{k,n,\rho}^{-(j-1)/2} \left| p_{n,\rho}'(x_{k,n,\rho}) \right|,
$$

(1.19)

Theorem 1.6. Let $w(x) = \exp(-R(x)) \in \tilde{\mathcal{L}}_\nu$ and $\rho > -1/2$. Assume that $1 + 2\rho - \delta/2 \geq 0$ for $\rho < -1/4$, and if $T(x)$ is bounded, then assume that

$$
a_n \leq C n^{2/(1+\nu-\delta)},
$$

(1.20)

where $0 \leq \delta < 1$ is defined in (1.13). For each $k = 1, 2, \ldots, n$ and $j = 0, 1, \ldots, \nu - 1$, one has

$$
\left| p_{n,\rho}^{(j)}(x_{k,n,\rho}) \right| \leq C \left(\frac{n}{\sqrt{2\pi}} + \frac{T(a_n)}{\sqrt{a_n}} \right)^{j-1} x_{k,n,\rho}^{-(j-1)/2} \left| p_{n,\rho}'(x_{k,n,\rho}) \right|,
$$

(1.21)

and in particular if j is even, then

$$
\left| p_{n,\rho}^{(j)}(x_{k,n,\rho}) \right| \leq C \left(\frac{T(a_n)}{\sqrt{a_n} x_{k,n,\rho}} + \frac{R'(x_{k,n,\rho})}{x_{k,n,\rho}} + \frac{1}{x_{k,n,\rho}} \right)
$$

$$
\times \left(\frac{n}{\sqrt{2\pi}} + \frac{T(a_n)}{\sqrt{a_n}} \right)^{j-2} x_{k,n,\rho}^{-(j-2)/2} \left| p_{n,\rho}'(x_{k,n,\rho}) \right|.
$$

(1.22)

Theorem 1.7. Let $w(x) = \exp(-R(x)) \in \tilde{\mathcal{L}}_\nu$ and $\rho > -1/2$. Let $(1/\epsilon)(a_n/n^2) \leq x_{k,n,\rho} \leq \epsilon a_n$, $0 < \epsilon < 1/4$, and $\nu = 2, 3, \ldots$, $s = 0, 1, \ldots, (\nu - 1)/2$. Then, under the same conditions as the assumptions of Theorem 1.6, there exist $\beta(n,k), 0 < D_1 \leq \beta(n,k) \leq D_2$ for absolute constants D_1, D_2 such that the following equality holds:

$$
p_{n,\rho}^{(2s+1)}(x_{k,n,\rho}) = (-1)^{s} \beta_{2s}(2n,k) \left(\frac{n}{\sqrt{a_n}} \right)^{2s} (1 + \rho_s(\epsilon, x_{k,n,\rho}, n)) p_{n}^{'}(x_{k,n,\rho}) x_{k,n,\rho}^{-s},
$$

(1.23)

and $|\rho_s(\epsilon, x_{k,n,\rho}, n)| \to 0$ as $n \to \infty$ and $\epsilon \to 0$.
Define
\[
\Phi_n(x) = \max \left\{ \eta_n, 1 - \left(\frac{x}{a_n} \right)^{1/2} \right\}, \quad \eta_n = \left\{ nT(a_n) \right\}^{-2/3},
\]
\[
z^+ = \begin{cases} z, & z > 0, \\ 0, & z \leq 0. \end{cases}
\]
(1.24)

Let us define
\[
\Theta_n(x) = \frac{x/a_n}{1 + x/a_n}.
\]
(1.25)

We consider the class of weights, \(\mathcal{F}(C^2) \), which is defined in Definition 2.1 below. Levin and Lubinsky have obtained the following theorem.

Theorem B (see [18, Theorem 13.6]). Assume that \(W \in \mathcal{F}(C^2) \). Let \(0 < p < \infty \). Then uniformly for \(n \geq 1 \),
\[
\|P_nW\|_{L_p(I)} \sim \begin{cases} a_n^{1/p - 1/2}, & p < 4, \\ a_n^{-1/4}(\log(n + 1))^{1/4}, & p = 4, \\ a_n^{1/p - 1/2}(nT(a_n))^{(2/3)(1/4 - 1/p)}, & p > 4. \end{cases}
\]
(1.26)

We remark that Levin and Lubinsky have shown Theorem B for more wider class \(\mathcal{F}(\text{lip}(1/2)) \supseteq \mathcal{F}(C^2) \). In the following, we investigate the various weighted \(L_p \)-norms \((0 < p \leq \infty) \) of \(p_{n,p}(x) \).

Theorem 1.8. Let \(w \in L_2 \). Let \(0 < p < \infty \) and \(\rho > -1/2 \). Then one has for \(n \geq 1 \),
\[
\left\| \Theta_n^{1/4}(x)p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^{\rho} \right\|_{L_p(\mathbb{R}^+)} \sim a_n^{1/p - 1/2} \begin{cases} 1, & p < 4, \\ (\log(1 + nT(a_n)))^{1/4}, & p = 4, \\ (nT(a_n))^{(2/3)(1/4 - 1/p)}, & p > 4. \end{cases}
\]
(1.27)

Theorem 1.9. Let \(w \in L_2 \). Let \(0 < p < \infty \) and \(\rho > -1/2 \). Then one has for \(n \geq 1 \),
\[
\left\| p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^{\rho} \right\|_{L_p(\mathbb{R}^+)} \sim a_n^{1/p - 1/2} \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ n^{(1/4 - 1/p)}, & p > 4. \end{cases}
\]
(1.28)
Theorem 1.10. Let \(w \in \mathcal{L}_2 \), \(0 \leq s \leq r \), and \(n \geq 1 \). Suppose that \(\rho > -1/2 \). For \(0 \leq s \leq r \) and \(n \geq 1 \), one has

\[
\left\| \Theta_n^{(r/4-1/p)} (x) \Phi_n (x) w(x) \left(x + \frac{a_n}{n} \right) \right\|_{L_p(\mathbb{R}^d)}^{s} \sim \begin{cases} a_n^{1/p-r/2} n^{p-r/2}, & \text{if } s = r, \quad pr \geq 4, \\ a_n^{1/p-s/2} n^{p-s/2}, & \text{otherwise,} \end{cases}
\]

and for \(p = \infty \)

\[
\left\| \Theta_n^{(r/4-1/p)} (x) \Phi_n (x) w(x) \left(x + \frac{a_n}{n} \right) \right\|_{L_{\infty}(\mathbb{R}^d)}^{s} \sim a_n^{-s/4}.
\]

This paper is organized as follows. In Section 2, we will introduce the weight class \(\tilde{\mathcal{F}}_n \) as an analogy of the class \(\mathcal{L}_n \) and the known results of orthonormal polynomials with respect to \(\tilde{\mathcal{F}}_n \) in order to prove the main results. In Section 3, we will prove Theorems 1.5, 1.6, and 1.7. Finally, we will prove the results for the various weighted \(L_p \)-norms (\(0 < p \leq \infty \)) of \(p_{n,p} \), that is, Theorems 1.8, 1.9, and 1.10, in Section 4.

2. Preliminaries

Levin and Lubinsky introduced the classes \(\mathcal{L}(C^2) \) and \(\mathcal{L}(C^2+) \) as an analogy of the classes \(\mathcal{F}(C^2) \) and \(\mathcal{F}(C^2+) \) which they already defined on \(I^* = (-\sqrt{d}, \sqrt{d}) \). They defined the following.

Definition 2.1 (see [18]). We assume that \(Q : I^* \to [0, \infty) \) has the following properties:

(a) \(Q(t) \) is continuous in \(I^* \), with \(Q(0) = 0 \),
(b) \(Q'(t) \) exists and is positive in \(I^* \setminus \{0\} \),
(c) \[
\lim_{t \to \sqrt{d}^-} Q(t) = \infty,
\]
(d) the function

\[
T^*(t) := \frac{tQ'(t)}{Q(t)}
\]

is quasi-increasing in \((0, \sqrt{d})\), with

\[
T^*(t) \geq \Lambda^* > 1, \quad t \in I^* \setminus \{0\},
\]
(e) there exists $C_1 > 0$ such that
\[
\frac{Q''(t)}{|Q'(t)|} \leq C_1 \frac{|Q'(t)|}{Q(t)}, \text{ a.e. } t \in I^* \setminus \{0\}. \tag{2.4}
\]

Then, we write $W \in \mathcal{F}(C^2)$. If there also exists a compact subinterval $J^* \ni 0$ of I^*, and $C_2 > 0$ such that
\[
\frac{Q''(t)}{|Q'(t)|} \geq C_2 \frac{|Q'(t)|}{Q(t)}, \text{ a.e. } t \in I^* \setminus J^*, \tag{2.5}
\]
then, we write $W \in \mathcal{F}(C^{2+})$.

Then we see that $\omega \in \mathcal{L}(C^2) \iff \mathcal{F}(C^2)$ and $\omega \in \mathcal{L}(C^2+) \iff \mathcal{F}(C^2+)$ from [1, Lemma 2.2]. In addition, we easily have the following.

Lemma 2.2. Let $Q(t) = R(t^2), x = t^2$. Then one has
\[
\omega \in \mathcal{L}_2 \implies W \in \mathcal{F}(C^{2+}),
\]
where $W(t) = \omega(x), x = t^2$.

On \mathbb{R}, we can consider the corresponding class to \mathcal{L}_v as follows.

Definition 2.3 (cf. [19]). Let $W = \exp(-Q) \in \mathcal{F}(C^{2+})$ and $v \geq 2$ be an integer. Let Q be a continuous and even function on \mathbb{R}. For the exponent Q, we assume the following:

(a) $Q^{(j)}(t) > 0$, for $0 \leq j \leq v$ and $t \in \mathbb{R}^+ \setminus \{0\}$,

(b) there exist positive constants $C_i > 0$ such that for $i = 1, 2, \ldots, v - 1$
\[
Q^{(i+1)}(t) \leq C_i Q^{(i)}(t) \frac{Q(t)}{Q(t)}, \text{ a.e. } x \in \mathbb{R}^+ \setminus \{0\}, \tag{2.7}
\]

(c) there exist positive constants $C, c_1 > 0$ and $0 \leq \delta^* < 1$ such that for $t \in (0, c_1)$
\[
Q^{(v)}(t) \leq C \left(\frac{1}{t} \right)^{\delta^*}, \tag{2.8}
\]

(d) there exists $c_2 > 0$ such that one has one among the following:

(d1) $T^*(t)/t$ is quasi-increasing on (c_2, ∞),

(d2) $Q^{(v)}(t)$ is nondecreasing on (c_2, ∞).

Then, we write $W(t) = e^{-Q(t)} \in \mathcal{F}_v$.

Let $W \in \tilde{\mathcal{F}}_\nu$ and $\nu \geq 2$. For $\rho^* > -1/2$, we set
\[
W_{\rho^*}(t) := |t|^{\rho^*} W(t).
\] (2.9)

Then, we can construct the orthonormal polynomials $P_{n,\rho^*}(t) = P_n(W_{\rho^*}^2, t)$ of degree n with respect to $W_{\rho^*}(t)$. That is,
\[
\int_{-\infty}^{\infty} P_{n,\rho^*}(v) P_{m,\rho^*}(v) W_{\rho^*}^2(v) dv = \delta_{nm}, \quad n, m = 0, 1, 2, \ldots.
\] (2.10)

Let us denote the zeros of $P_{n,\rho^*}(t)$ by
\[
-\infty < t_{1n} < \cdots < t_{2n} < t_{3n} < \infty.
\] (2.11)

Jung and Sakai [5, Theorems 3.3 and 3.6] estimate $I_{n,\rho^*}^{(j)}(t_{kn})$, $k = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \nu$, and we will obtain analogous estimations with respect to $p_{n,\rho^*}(x_{kn})$, $k = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \nu$ in Theorems 1.6 and 1.7.

There are many properties of $P_{n,\rho^*}(t) = P_n(W_{\rho^*}^2, t)$ with respect to $W_{\rho^*}(t)$, $W \in \tilde{\mathcal{F}}_\nu$, $\nu = 2, 3, \ldots$ of Definition 2.3 in [4–6, 19–21]. They were obtained by transformations from the results in [1, 2]. In this paper, we consider $w = \exp(-R) \in \tilde{\mathcal{L}}_\nu$ and $p_{n,\rho^*}(x) = p_n(w, \rho^*, x)$. In [5] we got the estimations of $I_{n,\rho^*}^{(j)}(x_{kn})$, $k = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \nu - 1$ with the weight $W_{\rho^*}(t) \in \tilde{\mathcal{F}}_\nu$. By a transformation of the results with respect to $P_{n,\rho^*}(t)$, we estimate $p_{n,\rho^*}(x_{kn})$, $k = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \nu - 1$. In order to it we will give the transformation theorems in this section. In the following, we will give some applications of them.

Theorem 2.4 (see [21, Theorem 2.1]). Let $W(t) = w(x)$ with $x = t^2$. Then, the orthonormal polynomials $P_{n,\rho^*}(t)$ on \mathbb{R} can be entirely reduced to the orthonormal polynomials $p_{n,\rho^*}(x)$ in \mathbb{R}^+ as follows: for $n = 0, 1, 2, \ldots$
\[
P_{2n,2\rho^*+1/2}(t) = p_{n,\rho^*}(x), \quad P_{2n+1,2\rho^*-(1/2)}(t) = tp_{n,\rho^*}(x).
\] (2.12)

In this paper, we will use the fact that $w_{\rho^*}(x) = x^\nu \exp(-R(x))$ is transformed into $W_{2\rho^*+1/2}(t) = |t|^{2\rho^*+1/2} \exp(-Q(t))$ as meaning that
\[
\int_0^{\infty} p_{n,\rho^*}(x)p_{m,\rho^*}(x)w_{\rho^*}^2(x) dx = 2 \int_0^{\infty} p_{n,\rho^*}(t^2)p_{m,\rho^*}(t^2)t^{4\rho^*+1} W^2(t) dt
\]
\[
= \int_{-\infty}^{\infty} P_{2n,2\rho^*+1/2}(t)P_{2m,2\rho^*+1/2}(t) W_{2\rho^*+1/2}(t) dt.
\] (2.13)

Theorem 2.5. Let $Q(t) = R(x), x = t^2$. Then one has
\[
w(x) = \exp(-R(x)) \in \tilde{\mathcal{L}}_\nu \implies W(t) = \exp(-Q(t)) \in \tilde{\mathcal{F}}_\nu.
\] (2.14)
In particular, one has

\[Q^{(v)}(t) \leq C \left(\frac{1}{t} \right)^{\delta}, \]

where \(0 \leq \delta < 1 \) is defined in (1.13).

Proof. Let \(w \in \tilde{L}_2 \). Then, from Lemma 2.2, one has \(W \in \mathcal{F}(C^2+) \). Let \([x] \) denote the maximum integer as \([x] \leq x \) (Gaussian symbol). For \(1 \leq j \leq v \), one has

\[Q^{(j)}(t) = \sum_{i=0}^{[j/2]} c_{ij} R^{(i-j)}(x)t^{i-2i}, \quad c_{ij} > 0 \quad (i = 0, 1, \ldots, [j/2]), \quad x = t^2. \tag{2.16} \]

Therefore, we easily see that (a) of Definition 2.3 holds. Let \(x = t^2 \). Since \(R^{(i)}(x) \) is increasing for \(x > 0 \) and \(\ell = 0, 1, \ldots, v - 1 \), there exists \(\xi \) with \(0 < \xi < x \) such that for \(k = 0, 1, \ldots, v - 2 \),

\[\frac{R^{(k)}(x)}{x} = R^{(k+1)}(\xi) \leq CR^{(k+1)}(x). \tag{2.17} \]

Then, since for \(0 \leq k < j \leq v - 1 \),

\[R^{(k)}(x) \leq Cx^{i-k} R^{(j)}(x), \tag{2.18} \]

one has by (b) of Definition 1.3 that

\[Q^{(j)}(t) = \sum_{i=0}^{[j/2]} c_{ij} R^{(i-j)}(x)t^{i-2i} \leq CR^{(j)}(x)t^j \leq CR^{(j-1)}(x)t^{j-1} \left(\frac{tR(x)}{R(x)} \right) \]

\[\leq CQ^{(j-1)}(t) \frac{Q'(t)}{Q(t)}, \quad 1 \leq j \leq v - 1. \tag{2.19} \]

Similarly, one has by (2.16), (d) of Definition 1.2, and (b) of Definition 1.3 that

\[Q^{(v)}(t) = c_{0,v} R^{(v)}(x)t^v + \sum_{i=1}^{[v/2]} c_{i,v} R^{(v-i)}(x)t^{v-2i} \]

\[\leq c_{0,v} R^{(v)}(x)t^v + CR^{(v-1)}(x)t^{v-2} \]

\[\leq CR^{(v-1)}(x)t^{v-1} \left(\frac{tR(x)}{R(x)} \right) \]

\[\leq CQ^{(v-1)}(t) \frac{Q'(t)}{Q(t)}, \tag{2.20} \]
Consequently, one has \(b \) in Definition 2.3. We know that
\[
\sum_{i=1}^{[v/2]} c_{k,v} R^{(v-i)}(x)t^{v-2i} \leq C, \quad t \in (0, c_1),
\]
(2.21)
and since \(t^{v-\delta} \leq C \) on \(t \in (0, c_1) \), one has from (1.13) that
\[
R^{(v)}(x)t^v \leq C \left(\frac{1}{t^v} \right) \delta \leq C \left(\frac{1}{t^v} \right) \leq C \left(\frac{1}{t^v} \right) \delta.
\]
(2.22)
Therefore, one has by (2.16)
\[
Q^{(v)}(t) \leq C \left(\frac{1}{t^\delta} \right),
\]
(2.23)
where \(0 \leq \delta < 1 \) is defined in (1.13). The inequalities (d1) and (d2) of Definition 2.3 follow easily from (d1) and (d2) of Definition 1.3. Therefore, one has (2.14).

3. Proofs of Theorems 1.5, 1.6, and 1.7

For convenience, in the rest of this paper, we put as follows:
\[
\rho > -\frac{1}{2}, \quad \rho^* := \rho + \frac{1}{2}, \quad p_{n}(x) := p_{n,\rho}(x), \quad P_{n}(t) := P_{n,\rho^*}(t),
\]
(3.1)
and \(x_{kn} = x_{k,n,\rho}, t_{kn} = t_{k,n,\rho} \). Then, we know that \(\rho^* > -1/2 \) and
\[
p_{n}(x) = P_{2n}(t), \quad x = t^2, \quad x_{kn} = t_{k,2n}^2, \quad t_{k,2n} > 0, \quad k = 1, 2, \ldots, n.
\]
(3.2)
In the following, we introduce some useful notations.

(a) The Mhaskar-Rahmanov-Saff numbers \(a_v \) and \(a_v^* \) are defined as the positive roots of the following equations:
\[
v = \frac{1}{\pi} \int_0^1 a_v t R'(a_v t) \{ t(1-t) \}^{-1/2} dt, \quad v > 0,
\]
(3.3)
\[
u = \frac{2}{\pi} \int_0^1 a_v^* t Q'(a_v^* t) \{ 1-t^2 \}^{-1/2} dt, \quad u > 0.
\]
(b) Let
\[
\eta_n = \{ nT(a_n) \}^{-2/3}, \quad \eta_n^* = \{ nT^*(a_n^*) \}^{-2/3}.
\]
(3.4)
Then, one has the following.
Lemma 3.1 (see [1, (2.5), (2.7), (2.9)]).

\[a_n = a_{2n}^2, \quad \eta_n = 4^{2/3} \eta_{2n}^*, \quad T(a_n) = \frac{1}{2} T^*(a_{2n}^*). \]

(3.5)

To prove Theorem 1.6, we need some lemmas as follows.

Lemma 3.2 (see [21, Theorem 2.2, Lemma 3.7]). For the minimum positive zero \(t_{[n/2],n} \) ([n/2] is the largest integer \(n/2 \)), one has

\[t_{[n/2],n} = a_n^* n^{-1}, \]

(3.6)

and for the maximum zero \(x_{1n} \), one has for large enough \(n \),

\[1 - \frac{t_{1n}}{a_n^*} - \eta_n^* = \eta_n^* = (nT^*(a_n^*))^{-2/3}. \]

(3.7)

Moreover, for some constant \(0 < \varepsilon \leq 2 \), one has

\[T^*(a_n^*) \leq Cn^{2-\varepsilon}. \]

(3.8)

Lemma 3.3 (see [6, Theorem 2.5]). Let \(W \in \mathcal{F}(C^2+) \) and \(r = 1, 2, \ldots \). Then, uniformly for \(1 \leq k \leq n \),

\[\left| \frac{P_n^{(r)}(t_{k,p,n})}{P_n'(t_{k,p,n})} \right| \leq C \left(\frac{n}{\sqrt{a_{2n}^* - t_{k,p,n}}} \right)^{r-1}. \]

(3.9)

Lemma 3.4 (see [5, Theorem 3.6 and Lemma 3.7 (3.20)]). Let \(\rho^* > -1/2 \) and \(W(x) = \exp(-Q(x)) \in \mathcal{F}_\nu, \nu \geq 2 \). Assume that \(1 + 2\rho^* - \delta^* \geq 0 \) for \(\rho^* < 0 \) and if \(T^*(t) \) is bounded, then assume

\[a_n^* \leq Cn^{1/(1+\nu-\delta^*)}, \]

(3.10)

where \(0 \leq \delta^* < 1 \) is defined in (2.8). If \(t_{kn} \neq 0 \), then one has for \(j = 1, 2, \ldots, \nu \)

\[\left| P_n^{(j)}(t_{kn}) \right| \leq C \left(\frac{n}{a_{2n}^* - |t_{kn}|} + \frac{T^*(a_n^*)}{a_n^*} \right)^{j-1} \left| P_n'(t_{kn}) \right|, \]

(3.11)

and in particular, if \(j \) is even, then

\[\left| P_n^{(j)}(t_{kn}) \right| \leq C \left(\frac{T^*(a_n^*)}{a_n^*} + |Q'(t_{kn})| + \frac{1}{|t_{kn}|} \right) \left(\frac{n}{a_{2n}^* - |t_{kn}|} + \frac{T^*(a_n^*)}{a_n^*} \right)^{j-2} \left| P_n'(t_{kn}) \right|. \]

(3.12)
Remark 3.5. Let \(W(t) \in \mathcal{F}(C^2) \). Then, from [19, Theorem 1.6] we know that when \(T^*(t) \) is unbounded, for any \(\eta > 0 \), there exists \(C(\eta) > 0 \) such that for \(t \geq 1 \),

\[
a^*_t \leq C(\eta)t^n. \tag{3.13}
\]

In addition, since \(T(x) = T^*(t)/2 \), we know that

(i) \(T(x) \) is bounded \(\Leftrightarrow \) \(T^*(t) \) is bounded,

(ii) \(T(x) \) is unbounded \(\Rightarrow \) \(a_n \leq Cn^\eta \) for any \(\eta > 0 \),

(iii) \(T(a_n) \leq Cn^{2-\varepsilon} \) for some constant \(0 < \varepsilon \leq 2 \).

Lemma 3.6. For \(j = 1, 2, 3, \ldots \), one has

\[
p_n^{(j)}(x) = \sum_{i=1}^{j} (-1)^{j-i} c_{j,i} P_{2n}^{(j)}(t)f^{-2j+i}, \tag{3.14}
\]

where \(c_{j,i} \) satisfy that for \(k = 1, 2, \ldots \),

\[
c_{k+1,1} = \frac{2k - 1}{2}c_{k,1}, \quad c_{k+1,k+1} = \frac{1}{2^{k+1}}, \quad c_{1,1} = \frac{1}{2}, \tag{3.15}
\]

and for \(2 \leq i \leq k \)

\[
c_{k+1,i} = c_{k,i-1} + \frac{(2k - i)c_{k,i}}{2}. \tag{3.16}
\]

Proof. It is easily proved, using the mathematical induction on \(j \). \qed

Proof of Theorem 1.5. By Lemmas 3.3, 3.6 and (3.2), one has

\[
\left| p_n^{(j)}(x_{kn}) \right| \leq C \sum_{i=1}^{j} \left| P_{2n}^{(j)}(t_{k,2n}) \right| \left| t^{-2j+i} \right|
\]

\[
\leq C \sum_{i=1}^{j} \left(\frac{2n}{\sqrt{4n^2 - t^2_{k,2n}}} \right)^{i-1} \left| P_{2n}^\prime(t_{k,2n}) \right| \left| t^{-2j+i} \right|. \tag{3.17}
\]
Since by Lemma 3.2
\[
\sum_{i=1}^{j} \left(\frac{2n}{\sqrt{a_{4n}^2 - t_{k,2n}^2}} \right)^{i-1} \left| t_{k,2n}^{-1} \right| \leq C \left\{ 1 + \left(\frac{2n}{\sqrt{a_{4n}^2 - t_{k,2n}^2}} \right)^{j-1} \right\} \left| t_{k,2n}^{-1} \right|
\]
\[
\leq C \left\{ t_{k,2n}^{-j+1} + \left(\frac{2n}{\sqrt{a_{4n}^2 - t_{k,2n}^2}} \right)^{j-1} \right\} \left| t_{k,2n}^{-1} \right|
\]
\[
\leq C \left(\frac{n}{\sqrt{a_{4n}^2 - t_{k,2n}^2}} \right)^{j-1} \left| t_{k,2n}^{-1} \right|
\]
one has from Lemma 3.1 that
\[
\left| p_n^{(j)}(x_{k,n}) \right| \leq C \left(\frac{n}{\sqrt{a_{4n}^2 - t_{k,2n}^2}} \right)^{j-1} \left| P_{2n}^{j}(t_{k,2n}) \right| \left| t_{k,2n}^{-1} \right|
\]
\[
\leq C \left(\frac{n}{\sqrt{a_{2n} - x_{k,n}}} \right)^{j-1} x_{k,n}^{-((j-1)/2)} \left| P_{2n}^{j}(x_{k,n}) \right|.
\]

Proof of Theorem 1.6. Since \(w(x) \in \mathcal{L}_v \), we know that \(W(t) \in \mathcal{F}_v \) and we know that \(\delta^* = \delta \) by Theorem 2.5 and from (3.1), (3.2), and Lemma 3.1 that

(i) \(\rho > -1/2 \Rightarrow \rho^* > -1/2 \),

(ii) \(1 + 2\rho - \delta/2 \geq 0 \) for \(\rho < -1/4 \Rightarrow 1 + 2\rho^* - \delta^* \geq 0 \) for \(\rho^* < 0 \),

(iii) \(a_n \leq C n^{2/(1+\nu-\delta)} \Rightarrow a_n^* \leq C n^{1/(1+\nu-\delta)} \).

Then, using Remark 3.5, we can apply Lemma 3.4 to \(p_n(x) = P_{2n}(t) \), \(x = t^2 \). In a similar way to the proof of Theorem 1.5, one has from Lemma 3.4 and Lemma 3.1
\[
\left| p_n^{(j)}(x_{k,n}) \right| \leq C \sum_{i=1}^{j} \left| P_{2n}^{j}(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+i} \right|
\]
\[
\leq C \sum_{i=1}^{j} \left(\frac{n}{a_{4n}^2 - t_{k,2n}^2} + \frac{T^*(a_{2n}^2)}{a_{2n}^2} \right)^{i-1} \left| P_{2n}^{j}(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+i} \right|
\]
\[
\leq C \left(\frac{n}{a_{4n}^2 - t_{k,2n}^2} + \frac{T(a_n)}{a_n} \right)^{j-1} x_{k,n}^{-((j-1)/2)} \left| P_{2n}^{j}(x_{k,n}) \right|.
\]
Let \(j \) be even. Then, one has from Lemma 3.4 that
\[
\sum_{i \text{ even}} \left| P_{2n}^{(i)}(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+i} \right| \leq C \left(\frac{T^* (a_{2n}^*)}{a_{2n}^*} + \left| Q'(t_{k,2n}) \right| + \frac{1}{\left| t_{k,2n} \right|} \right) \left| P_{2n}'(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+2} \right| \\
\times \sum_{i \text{ even}} \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{i-2} \left| t_{k,2n}^{-i-2} \right|.
\] (3.21)

Since by Lemma 3.2 and
\[
\sum_{i \text{ even}} \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{i-2} \left| t_{k,2n}^{-i-2} \right| \leq C \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{i-2} \left| t_{k,2n}^{-i-2} \right|,
\] (3.22)
one has
\[
\sum_{i \text{ even}} \left| P_{2n}^{(i)}(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+i} \right| \leq C \left(\frac{T^* (a_{2n}^*)}{a_{2n}^*} + \left| Q'(t_{k,2n}) \right| + \frac{1}{\left| t_{k,2n} \right|} \right) \left| P_{2n}'(t_{k,2n}) \right| \left| t_{k,2n}^{-j} \right| \\
\times \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{j-2} \left| t_{k,2n}^{-j} \right|,
\] (3.23)

\[
\sum_{i \text{ odd}} \left| P_{2n}^{(i)}(t_{k,2n}) \right| \left| t_{k,2n}^{-2j+i} \right| \leq C \left(\frac{T^* (a_{2n}^*)}{a_{2n}^*} + \left| Q'(t_{k,2n}) \right| + \frac{1}{\left| t_{k,2n} \right|} \right) \\
\times \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{j-2} \left| t_{k,2n}^{-j-1} \right|.
\]

Therefore, when \(j \) is even, one has by Lemma 3.1 that
\[
\left| P_{n}^{(j)}(x_{kn}) \right| \leq C \left(\frac{T^* (a_{2n}^*)}{a_{2n}^* \left| t_{k,2n} \right|} + \left| Q'(t_{k,2n}) \right| + \frac{1}{\left| t_{k,2n} \right|} \right) \\
\times \left(\frac{n}{a_{4n}^* - \left| t_{k,2n} \right|} + \frac{T^* (a_{2n}^*)}{a_{2n}^*} \right)^{j-2} \left| t_{k,2n}^{-j+1} \right| \\
\leq C \left(\frac{T(a_n)}{\sqrt{a_n x_{k,n}}} + R'(x_{k,n}) + \frac{1}{x_{k,n}} \right) \\
\times \left(\frac{n}{\sqrt{a_{2n} - \sqrt{x_{k,n}}} + \sqrt{a_n x_{k,n}}} + \frac{T(a_n)}{\sqrt{a_n} x_{k,n}} \right)^{j-2} \left(x_{k,n}^{-(j-2)/2} \right) \left| P_{n}(x_{k,n}) \right|.
\] (3.24)

Next, we will prove Theorem 1.7. To prove it, we need two lemmas as follows.
Lemma 3.7 ([5, Theorem 3.3]). Let \(W(x) = \exp(-Q(x)) \in \mathcal{F}_\nu, \nu \geq 2 \). Let \((1/\varepsilon)(a_n^*/n) \leq |t_{kn}| \leq \varepsilon a_n^*, 0 < \varepsilon < 1/2, \) and \(s = 1, 2, \ldots, (\nu - 1)/2 \). Then, under the same conditions as the assumptions of Lemma 3.4, there exist \(\beta(n, k), 0 < D_1 \leq \beta(n, k) \leq D_2 \) for absolute constants \(D_1, D_2 \) such that the following equality holds:

\[
P_n^{(2s+1)}(t_{kn}) = (-1)^s \beta_n^s(n, k) \left(\frac{n}{a_n^*} \right)^{2s} (1 + \tilde{\rho}_{2s+1}(\varepsilon, t_{kn}, n)) P_n'(t_{kn}),
\]

and \(|\tilde{\rho}_{2s+1}(\varepsilon, t_{kn}, n)| \to 0\) as \(n \to \infty\) and \(\varepsilon \to 0\).

From Lemma 3.3, we easily have the following.

Lemma 3.8. Let \(W \in \mathcal{F}(C^2+) \) and \(j = 1, 2, \ldots \). Then, uniformly for \(|t_{kn}| \leq a_n^*/2 \),

\[
\left| P_n^{(j)}(t_{kn}) \right| \leq C \left(\frac{n}{a_n^*} \right)^{j-1} |P_n'(t_{kn})|.
\]

Proof of Theorem 1.7. By Lemmas 3.4, 3.6 and Theorem 2.4, one has

\[
p_n^{(2s+1)}(x_{kn}) = \sum_{i=1}^{2s+1} (-1)^{2s+1-i} c_{2s+1,j} P_n^{(i)}(t_{kn}) h_{k,2n}^{-2(2s+1)+i}
= \sum_{p=0}^{s} c_{2s+1,2p+1} P_{2n}^{(2p+1)}(t_{k,2n}) h_{k,2n}^{4s+2p-1} - \sum_{p=1}^{s} c_{2s+1,2p} P_{2n}^{(2p)}(t_{k,2n}) h_{k,2n}^{4s+2p-2}
= \sum_{\text{odd}} - \sum_{\text{even}}.
\]

Since we know that

\[
\frac{1}{\varepsilon} a_n \leq x_{k,n} \leq \varepsilon a_n \Rightarrow \frac{2}{\sqrt{\varepsilon}} a_n^2 \leq |t_{k,2n}| \leq \sqrt{\varepsilon} a_n^* \leq a_n^* 0 < \sqrt{\varepsilon} < \frac{1}{2},
\]

by the same reason as the proof of Theorem 1.6, we can apply Lemma 3.7 to \(P_{2n}^{(2p+1)}(t_{k,2n}) \).
Then, using Lemmas 3.7 and 3.6, one has

\[
\sum_{p=0}^{s} c_{2p+1} (1-1)^p p_{2n+1} (2n, k) \left(\frac{2n}{a_{2n}} \right)^{2p} (1 + \tilde{\rho}_{2p+1}) P_{2n} (t_{k,2n}) t_{k,2n}^{-4s+2p-1} \\
= (-1)^s p_{2n} (2n, k) \left(\frac{n}{\sqrt{a_{2n}}} \right)^{2s} \left(1 + \tilde{\rho}_{2p+1} \right) P_{2n} (t_{k,2n}) t_{k,2n}^{-2s-1} \\
+ \sum_{p=0}^{s} c_{2p+1} (1-1)^p p_{2n} (2n, k) \left(\frac{2n}{a_{2n}} \right)^{2p} (1 + \tilde{\rho}_{2p+1}) P_{2n} (t_{k,2n}) t_{k,2n}^{-4s+2p-1} \\
= (-1)^s p_{2n} (2n, k) \left(\frac{n}{\sqrt{a_{2n}}} \right)^{2s} \left(1 + \tilde{\rho}_{2p+1} \right) P_{2n} (t_{k,2n}) t_{k,2n}^{-2s-1} \\
+ \sum_{p=0}^{s} c_{2p+1} (1-1)^p p_{2n} (2n, k) \left(\frac{2n}{a_{2n}} \right)^{2s} \left(1 + \tilde{\rho}_{2p+1} \right) t_{k,2n}^{-2s-1} \\
\times \sum_{p=0}^{s-1} c_{2s+1,2p+1} (-1)^{p-s} 2s p_{2n} (2n, k) \left(\frac{2n}{a_{2n}} \right)^{2(s-p)} (1 + \tilde{\rho}_{2p+1}) t_{k,2n}^{-2(s-p)} .
\]

(3.29)

Here, \(\tilde{\rho}_{2p+1} := \tilde{\rho}_{2p+1} (t_{k,2n}, 2n, p = 0, 1, \ldots, s). \) Since from (3.28) we see that for \(0 \leq p \leq s-1, \)

\[
\left(\frac{a_{2n}}{2n} \right)^{2(s-p)} \leq \left(\frac{\sqrt{\varepsilon}}{2} \right)^{2(s-p)} \leq \left(\frac{1}{4} \right)^{s-p} \varepsilon,
\]

(3.30)

one has that

\[
\sum_{p=0}^{s-1} c_{2s+1,2p+1} (-1)^{p-s} 2s p_{2n} (2n, k) \left(\frac{a_{2n}}{2n} \right)^{2(s-p)} (1 + \tilde{\rho}_{2p+1}) t_{k,2n}^{-2(s-p)} \rightarrow 0,
\]

(3.31)

as \(n \to \infty \) and \(\varepsilon \to 0. \) If we let

\[
\xi'_{n,1} (s; x_{kn}) := \tilde{\rho}_{2p+1} + \sum_{p=0}^{s-1} c_{2s+1,2p+1} (-1)^{p-s} 2s p_{2n} (2n, k) \left(\frac{2n}{a_{2n}} \right)^{2(s-p)} (1 + \tilde{\rho}_{2p+1}) t_{k,2n}^{-2(s-p)} ,
\]

(3.32)

then one has

\[
\sum_{\text{odd}} = (-1)^s p_{2n} (2n, k) \left(\frac{n}{\sqrt{a_{2n}}} \right)^{2s} \left(1 + \tilde{\rho}_{2p+1} \right) P_{2n} (t_{k,2n}) t_{k,2n}^{-2s-1} \\
= (-1)^s p_{2n} (2n, k) \left(\frac{n}{\sqrt{a_{2n}}} \right)^{2s} \left(1 + \tilde{\rho}_{2p+1} (s; x_{kn}) \right) P_{2n} (x_{kn}) x_{k,n}^{-s} ,
\]

(3.33)
Lemma 4.1. Let $|\xi_{n,1}^s(s,x_{kn})| \to 0$ as $n \to \infty$ and $\varepsilon \to 0$. On the other hand, we obtain

$$
\sum_{p=1}^{s} \sum_{k=1,2p} \frac{P_{2n}^{(2p)}(t_{k,2n})}{P_{2n}^{(2p)}(t_{k,2n})} P_{2n}^{(2p)}(t_{k,2n}) t_{k,2n}^{1-4s+2p-2} = \sum_{p=1}^{s} \sum_{k=1,2p} \frac{P_{2n}^{(2p)}(t_{k,2n})}{P_{2n}^{(2p)}(t_{k,2n})} P_{2n}^{(2p)}(t_{k,2n}) t_{k,2n}^{1-4s+2p-1}
$$

$$
= (-1)^s \beta_{2n}^s(2n,k) \left(\frac{n}{\sqrt{a_n}} \right)^{2s} p_n(x_k,n)x_k^{-s} \tag{3.34}
$$

$$
\times \sum_{p=1}^{s} \sum_{k=1,2p} \left(-1 \right)^s \beta_{2n}^s(2n,k) \left(\frac{n}{\sqrt{a_n}} \right)^{2s} P_{2n}^{(2p)}(t_{k,2n}) t_{k,2n}^{1-2s+2p-1}
$$

$$
:= \xi_{n,2}^s(s;x_{kn},n) (-1)^s \beta_{2n}^s(2n,k) \left(\frac{n}{\sqrt{a_n}} \right)^{2s} p_n(x_k,n)x_k^{-s}.
$$

Here, one has from Lemma 3.8 and (3.28) that

$$
\left| \xi_{n,2}^s(s;x_{kn},n) \right| = \sum_{p=1}^{s} \sum_{k=1,2p} \left(-1 \right)^s \beta_{2n}^s(2n,k) \left(\frac{n}{\sqrt{a_n}} \right)^{2s} P_{2n}^{(2p)}(t_{k,2n}) t_{k,2n}^{1-2s+2p-1}
$$

$$
\leq C \sum_{p=1}^{s} \left(\frac{a_n^{2s}}{n} \right) \frac{1}{t_{k,2n}} 2s-2p+1 \leq C \sqrt{\varepsilon}.
$$

Finally, if we let $\rho_s(\varepsilon,x_{kn}) := \xi_{n,1}^s(s;x_{kn}) - \xi_{n,2}^s(s;x_{kn})$, then the result is proved. \qed

4. Proofs of Theorems 1.8, 1.9, and 1.10

Lemma 4.1. Let $W(t) \in \mathcal{F}(C^2)$, and let $0 < p < \infty$ and $\rho^* > -1/2$. Then, one has for $n \geq 1$ that

$$
\left\| P_{n,T}(t) W(t) \left(\left| t \right| + \frac{a_n^*}{n} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \sim \left\| P_{n,T}(t) W(t) \left(\left| t \right| + \frac{a_n^*}{n} \right)^{\rho^*} \right\|_{L_p(\mathbb{R},(a_n^*/2|t|\leq 2a_n^*))}
$$

$$
\leq a_n^{1/p-1/2} \left\{ \left(\log (1 + nT^*(a_n^*)) \right)^{1/4}, p = 4, \right. \right.

$$

$$
\left\{ \left(nT^*(a_n^*) \right)^{2/(3(p-1)/p)}, p > 4. \right\}
$$

(4.1)
Proof. In [21, theorem 2.6] we showed that

\[
\left\| P_{n,\rho'}(t)W(t) \left(|t| + \frac{a_n^*}{n} \right)^\rho \right\|_{L_p(\mathbb{R})} \sim \begin{cases} a_n^{1/p-1/2} & p < 4, \\ \log (1 + nT^*(a_n^*))^{1/4} & p = 4, \\ nT^*(a_n^*)^{2/(1-4/p)} & p > 4. \end{cases}
\]

But, seeing our proof of [21, Theorem 2.6] carefully, we can easily prove the first equivalence.

\[\square \]

Lemma 4.2 (see [21, Theorem 2.4]). Let \(W(t) \in \mathcal{F}(C^2) \), \(0 < p \leq \infty \) and \(L \geq 0 \). Let \(\beta \in \mathbb{R} \). Then, given \(r > 1 \), there exists a positive constant \(C_2 \) such that one has for any polynomial \(P \in \mathcal{P}_n \) that

\[
\left\| (PW_\beta)(t) \right\|_{L_p(|t| \leq a_n^*)} \leq \exp(-C_2n^p) \left\| (PW_\beta)(t) \right\|_{L_p(|t| \leq a_n^*(1-Ln^*))}.
\]

Proof of Theorem 1.8. From Theorem 2.4 and Lemmas 4.2 and 4.1, one has

\[
\left\| \Theta_n^{1/4}(x)p_{n,\rho}(x)w(x) \left(x + \frac{a_n^*}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R})} \leq C \left(\frac{t^2}{a_{2n}^*} \right)^{1/4} \left\| P_{2n,\rho'}(t)W(t) \left(|t| + \frac{a_{2n}^*}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R})}^{1/p-1/2}
\]

\[
\leq C \left(\frac{1}{a_{2n}^*} \right)^{1/2} \left\| P_{2n,\rho'}(t)W(t) \left(|t| + \frac{a_{2n}^*}{n^2} \right)^\rho \right\|_{L_p(|t| \leq 2a_{2n}^*)}^{1/p-1/2}
\]

\[
\leq C_{a_{2n}^*} \left(\frac{1}{a_{2n}^*} \right)^{1/p-1/2} \left\| P_{2n,\rho'}(t)W(t) \left(|t| + \frac{a_{2n}^*}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R})}^{1/p-1/2}
\]

\[
\sim \begin{cases} a_{2n}^{2/p-1} & p < 4, \\ \log (1 + nT^*(a_{2n}^*))^{1/4} & p = 4, \\ nT^*(a_{2n}^*)^{2/(1-4/p)} & p > 4. \end{cases}
\]
On the other hand, one has by Theorem 2.4 and Lemma 4.1 that

\[
\left\| \Theta_n^{1/4} \right\|_{L_p} \left(x + \frac{a_n}{n^2} \right)^\rho \left(x + \frac{a_n n^{-2}}{n^2} \right)^{\rho/4} \left(a_n - x \right)^{1/4} \sim 1,
\]

where \(\rho > -1/2 \) and \(\omega(x) \in \mathcal{L}(C^2) \). Then, uniformly for \(n \geq 1 \) and \(1 \leq j \leq n \), one has the following:

(a) \(\sup_{x \in I} |p_{n,\rho}(x)| \omega(x) \left(x + \frac{a_n}{n^2} \right)^\rho \left(x + \frac{a_n n^{-2}}{n^2} \right)^{\rho/4} \left(a_n - x \right)^{1/4} \sim 1 \), \(n \geq 1 \) and \(x \in [x_{j+1,n}, x_{jn}] \),

(b) for \(j \leq n - 1 \) and \(x \in [x_{j+1,n}, x_{jn}] \),

\[
|p_{n,\rho}(x)| \omega(x) \left(x + \frac{a_n}{n^2} \right)^\rho \sim \min \{ |x - x_{jn}|, |x - x_{j+1,n}| \} \varphi_n(x_{jn})^{-1} [x_{jn}(a_n - x_{jn})]^{-1/4},
\]

(c) for \(1 \leq j \leq n - 1 \),

\[
x_{jn} - x_{j+1,n} \sim \varphi_n(x_{jn}),
\]

where

\[
\varphi_u(x) = \begin{cases}
\frac{\sqrt{x + a_n u^{-2} a_n - x}}{u \sqrt{a_n - x + a_n u^2}}, & 0 \leq x \leq a_u, \\
\varphi_u(a_u), & a_u < x.
\end{cases}
\]

Proof. (a) It is from [1, Theorem 1.2]. (b) It is from [2, Theorem 1.3]. (c) It is from [2, Theorem 1.4].
Proof of Theorem 1.9. By Theorem 1.8, one has for $0 < p \leq 4$,

$$
\left\| p_{n,\rho}(x) w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R}^+)} \geq C \left\| \Theta_n^{1/4}(x) p_{n,\rho}(x) w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R}^+)}
$$

$$
\sim a_n^{-1/p - 1/2} \begin{cases}
1, & p < 4, \\
\left\{ \log (nT(a_n)) \right\}^{1/4}, & p = 4.
\end{cases}
\quad (4.10)
$$

For $p > 4$, we know by (4.7) and (4.8) that

$$
\int_{x_{an}}^{a_n/3} \left\| p_{n,\rho}(x) w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \right\| dx
$$

$$
\geq C \sum_{x_m \leq x_{jn} \leq a_n/3} \int_{x_{jn+1,n}}^{x_{jn}} |x - x_{jn+1,n}|^p dx \varphi_n(x_{jn}) \left[x_{jn} (a_n - x_{jn}) \right]^{-p/4}
$$

$$
\sim a_n^{-p/4} \sum_{x_m \leq x_{jn} \leq a_n/3} \varphi_n(x_{jn}) x_{jn}^{-p/4}
$$

$$
\sim a_n^{-p/4} \int_{a_n n^{-2}}^{a_n/3} t^{-p/4} dt
$$

$$
\sim a_n^{-p/2 + 1} n^{2(p/4 - 1)}.
\quad (4.11)
$$

Then, for $p > 4$

$$
\left\| p_{n,\rho}(x) w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R}^+)} \geq C a_n^{-1/2 + 1/p} n^{2(1/4 - 1/p)}.
\quad (4.12)
$$

Therefore, one has

$$
\left\| p_{n,\rho}(x) w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \right\|_{L_p(\mathbb{R}^+)} \geq C a_n^{-1/p - 1/2} \begin{cases}
1, & p < 4, \\
\left\{ \log (nT(a_n)) \right\}^{1/4}, & p = 4, \\
\nu^{2(1/4 - 1/p)}, & p > 4.
\end{cases}
\quad (4.13)
$$
On the other hand, one has from Theorem 1.8 that

\[\| p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \|_{L_p(x \geq a_n/3)} \sim \| \Theta_n^{1/4}(x)p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \|_{L_p(x \geq a_n/3)} \]

\[\leq \| \Theta_n^{1/4}(x)p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \|_{L_p(\mathbb{R})} \]

\[\sim a_n^{1/p-1/2} \begin{cases} 1, & p < 4, \\ \{ \log(nT(a_n)) \}^{1/4}, & p = 4, \\ n^{2/(1-1/p)} \{ \log a_n \}^{1/4}, & p > 4. \end{cases} \tag{4.14} \]

and by (4.6) that

\[\| p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \|_{L_p(x \leq a_n/3)} \leq Ca_n^{-1/4} \left(\int_0^{a_n/3} \left(x + \frac{a_n}{n^2} \right)^{-p/4} dx \right)^{1/p} \]

\[\sim a_n^{1/p-1/2} \begin{cases} 1, & p < 4, \\ \{ \log a_n \}^{1/4}, & p = 4, \\ n^{2/(1-1/p)} \{ \log(nT(a_n)) \}^{1/4}, & p > 4. \end{cases} \tag{4.15} \]

Therefore, one has

\[\| p_{n,p}(x)w(x) \left(x + \frac{a_n}{n^2} \right)^\rho \|_{L_p(\mathbb{R})} \sim a_n^{1/p-1/2} \begin{cases} 1, & p < 4, \\ \{ \log(nT(a_n)) \}^{1/4}, & p = 4, \\ n^{2/(1-1/p)} \{ \log(nT(a_n)) \}^{1/4}, & p > 4. \end{cases} \tag{4.16} \]

From Remark 3.5(iii), we see that \(nT(a_n) < C n^3 \). So, consequently, one has the result. \qed

Let

\[\Phi_n^*(t) = \max \left\{ \eta_n^* - \frac{|t|}{a_n^*} \right\}, \quad \eta_n^* = \{ nT(a_n^*) \}^{-2/3}. \tag{4.17} \]

Then, we obtain by Lemma 3.1 that

\[\Phi_n(x) - \Phi_{2n}^*(t), \quad x = t^2. \tag{4.18} \]
Lemma 4.4 (see [21, Theorem 2.7]). Let $W_{\rho^*} \in \mathcal{F}(C^2)$ and $\rho^* > -1/2$. For $0 \leq s \leq r$ and $n \geq 1$, one has

\[\left\| \Phi_n^*(t^{(r/4-1/p)^+}) P_{n,\rho^*}(t) W(t) \left(|t| + \frac{a_n^*}{n} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \]

\[\sim \left\| \Phi_n^*(t^{(r/4-1/p)^+}) P_{n,\rho^*}(t) W(t) \left(|t| + \frac{a_n^*}{n} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \]

\[\sim \begin{cases} \alpha_n^{1/p-r/2} \log n, & s = r, 4 \leq pr < \infty, \\ \alpha_n^{1/p-s/2}, & \text{otherwise}. \end{cases} \tag{4.19} \]

Proof of Theorem 1.10. By Theorem 2.4, we can transform $p_{n,\rho}(x)$ on \mathbb{R}^+ to $P_{2n,\rho^*}(t)$ on \mathbb{R}.

\[\left\| \Theta_n^{r/4}(x) \Phi_n^*(t^{(r/4-1/p)^+}) (x) P_n w(x) \left(x + \frac{a_n}{n^2} \right)^{\rho^*} \right\|_{L_p(\mathbb{R}^+)} \]

\[= \left\| \Theta_n^{r/4}(t^2) \Phi_n^*(t^{(r/4-1/p)^+}) t P_{2n} W(t) \left(t^2 + \frac{a_n^2}{n^2} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \tag{4.20} \]

Using Lemma 4.4 and noting (3.1), one has

\[\left\| \Theta_n^{r/4}(t^2) \Phi_{2n}^*(t^{(r/4-1/p)^+}) t P_{2n} W(t) \left(t^2 + \frac{a_n^2}{n^2} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \]

\[\geq \left\| \Theta_n^{r/4}(t^2) \Phi_{2n}^*(t^{(r/4-1/p)^+}) t P_{2n} W(t) \left(t^2 + \frac{a_n^2}{n^2} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \tag{4.21} \]

\[\sim \begin{cases} \alpha_n^{1/p-s/2} \log n, & s = r, 4 \leq pr < \infty, \\ \alpha_n^{2/p-s}, & \text{otherwise}. \end{cases} \]

On the other hand, by Lemma 4.2, we see

\[\left\| \Theta_n^{r/4}(x) \Phi_{2n}^*(t^{(r/4-1/p)^+}) t P_{2n}(t) W(t) \left(t^2 + \frac{a_n^2}{n^2} \right)^{\rho^*} \right\|_{L_p(\mathbb{R})} \]

\[\leq C \eta_{2n}^{(r/4-1/p)^+} e^{-\epsilon n}, \tag{4.22} \]
where $c > 0$ is a constant. Therefore, using Lemma 4.4 and noting (3.1) and the definition of Θ_n, one has

$$
\left\| \Theta_n^{r/4} \left(t^2 \right) \Phi_n^{r/4-1/p^+} \left(t \right) \right\| L_p(\mathbb{R})
\leq C \tilde{a}_{2n}^{-r/2} \left\| \Phi_n^{r/4-1/p^+} \left(t \right) \right\| L_p(|t| \leq 2\tilde{a}_{2n})
\leq C \tilde{a}_{2n}^{1/p-s/2} \left\| \Phi_n^{r/4-1/p^+} \left(t \right) \right\| L_p(|t| \leq 2\tilde{a}_{2n})
\leq C \tilde{a}_{2n}^{1/p-s/2} \left\| \Phi_n^{r/4-1/p^+} \left(t \right) \right\| L_p(\mathbb{R})
\sim \begin{cases}
\tilde{a}_{2n}^{2/p-r} \log n, & \text{if } s = r, \ 4 \leq pr < \infty, \\
\tilde{a}_{2n}^{2/p-s}, & \text{otherwise.}
\end{cases}
$$

Therefore, one has

$$
\left\| \Theta_n^{r/4} \left(x \right) \Phi_n^{r/4-1/p^+} \left(x \right) \right\| L_p(\mathbb{R})
\sim \begin{cases}
\tilde{a}_{2n}^{2/p-r} \log n, & \text{if } s = r, \ 4 \leq pr < \infty, \\
\tilde{a}_{2n}^{2/p-s}, & \text{otherwise,}
\end{cases}
$$

Acknowledgments

The authors thank the referees for many kind suggestions and comments. H. S. Jung was supported by SEOK CHUN Research Fund, Sungkyunkwan University, 2010.

References

