An Integral Analogue of the Ostrowski Inequality

C.E.M. PEARCE, J. PEČARIĆ and S. VAROŠANE

*a Department of Applied Mathematics, The University of Adelaide, Adelaide SA 5005, Australia; b Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 41000 Zagreb, Croatia; c Department of Mathematics, University of Zagreb, Bijenička cesta 30, 41000 Zagreb, Croatia

(Received 2 April 1997)

We give an integral analogue of the Ostrowski inequality and several extensions, allowing in particular for multiple linear constraints.

Keywords: Ostrowski inequality; Integral inequality; Multiple linear constraints

AMS 1991 Subject Classification: Primary 26D15; Secondary 60E15

1 INTRODUCTION

The result known as Ostrowski’s inequality [6] is as follows.

THEOREM A Let a, b and z be real n-tuples with \(a \neq 0 \) and such that

\[
\sum_{i=1}^{n} a_i z_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} b_i z_i = 1.
\]

Then

\[
\sum_{i=1}^{n} z_i^2 \geq \frac{\sum_{i=1}^{n} a_i^2}{(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)} - \frac{(\sum_{i=1}^{n} a_i b_i)^2}{(\sum_{i=1}^{n} a_i b_i)^2}.
\]

Corresponding author.
Equality occurs if and only if

\[z_j = \frac{\sum b_i a_j^2 - a_j \sum a_i b_i}{(\sum a_i^2)(\sum b_i^2) - (\sum a_i b_i)^2} \quad (1 \leq j \leq n). \]

We remark that (1) entails that the sequences \((a_i), (b_i)\) are not proportional, so that by the condition for equality in Cauchy’s theorem the common denominator of the expressions on the right-hand sides of the last two relations is nonzero.

Ostrowski’s inequality has been extended by Alić and Pečarić [1], who established Theorem B below.

Theorem B Suppose the conditions of Theorem A hold and \(p \geq 1 \) is a real number. Then

\[(\sum z_i^2)^p \geq \frac{(\sum a_i^2)^p}{(\sum a_i^2)^p (\sum b_i^2)^p - (\sum a_i b_i)^{2p}}. \]

This extended an earlier result of Madevski [3]. Alić and Pečarić used Theorem B to derive a number of applications.

The aim of this paper is to carry these ideas somewhat further. First we present an integral analogue to Ostrowski’s inequality. In fact both Theorems A and B can be so extended. This is the substance of Section 2.

In Section 3 we note briefly how this may be used to derive some results for moments of probability distributions. We then turn to extensions of the discrete formulation. In Section 4 we note that the results of [1] generalize to the case of nonuniform weighting and in Section 5 we obtain a higher-dimensional discrete version of Theorem A, allowing for variables which are subject to a general number of linear constraints.

We conclude Section 5 with a corresponding extension to the integral analogue allowing a general number of linear constraints.

2 AN INTEGRAL OSTROWSKI INEQUALITY

It will be convenient to first derive an integral version of Theorem A and then extend this to provide an integral analogue of Theorem B.
Theorem 1 Let σ be a nonnegative measure on the real line \mathbf{R} and $f, g, h: \mathbf{R} \to \mathbf{R}$ be functions with g not identically zero and such that $f^2, g^2, h^2 \in \mathcal{L}_1(\mathbf{R}, \sigma)$, with

$$\int g(x)f(x) \, d\sigma = 0 \quad \text{and} \quad \int h(x)f(x) \, d\sigma = 1. \quad (3)$$

Then

$$\int f^2(x) \, d\sigma \geq \frac{\int g^2(x) \, d\sigma}{(\int g^2(x) \, d\sigma)(\int h^2(x) \, d\sigma) - (\int g(x)h(x) \, d\sigma)^2}, \quad (4)$$

with equality if and only if

$$f(x) = \frac{h(x) \int g^2(x) \, d\sigma - g(x) \int h^2(x) \, d\sigma}{(\int g^2(x) \, d\sigma)(\int h^2(x) \, d\sigma) - (\int g(x)h(x) \, d\sigma)^2}.$$

Proof Set $A := \int g^2(x) \, d\sigma$, $B := \int h^2(x) \, d\sigma$, $C := \int g(x)h(x) \, d\sigma$ and define function $w: \mathbf{R} \to \mathbf{R}$ by

$$w(x) = \frac{Ah(x) - Cg(x)}{AB - C^2}.$$

As with our comments following the enunciation of Theorem A, the denominator in this last expression is nonvanishing. It is easy to check that

$$\int g(x)w(x) \, d\sigma = 0, \quad \int h(x)w(x) \, d\sigma = 1,$$

$$\int f(x)w(x) \, d\sigma = \frac{A}{AB - C^2}, \quad \int w^2(x) \, d\sigma = \frac{A}{AB - C^2}.$$

Hence we have

$$0 \leq \int (f(x) - w(x))^2 \, d\sigma$$

$$= \int f^2(x) \, d\sigma - 2 \int f(x)w(x) \, d\sigma + \int w^2(x) \, d\sigma$$

$$= \int f^2(x) \, d\sigma - \frac{2A}{AB - C^2} + \frac{A}{AB - C^2}$$

$$= \int f^2(x) \, dx - \frac{A}{AB - C^2},$$

giving the desired result.
Theorem 2 Assume the conditions of Theorem 1 hold and let $p \geq 1$ be a real number. Then

$$
\left(\int f^2(x) \, d\sigma \right)^p \geq \frac{(\int g^2(x) \, d\sigma)^p}{(\int g^2(x) \, d\sigma)^p (\int h^2(x) \, d\sigma)^p - (\int g(x)h(x) \, d\sigma)^{2p}}.
$$

Proof For $u \geq v \geq 0$, the inequality between power sums of orders $p \geq 1$ and 1 provides

$$
((u - v)^p + v^p)^{1/p} \leq (u - v) + v = u,
$$

that is, $(u-v)^p \leq u^p - v^p$. Hence by (4)

$$
\left(\int g^2(x) \, d\sigma \right)^p \left(\int h^2(x) \, d\sigma \right)^p - \left(\int g(x)h(x) \, d\sigma \right)^{2p} \geq \left(\int g^2(x) \, d\sigma \int h^2(x) \, d\sigma - \left(\int g(x)h(x) \, d\sigma \right)^2 \right)^p \\
\geq \left(\frac{\int g^2(x) \, d\sigma}{\int f^2(x) \, d\sigma} \right)^p,
$$

which gives the stated result.

If $\int h(x)f(x) \, d\sigma \neq 0$, then from the substitution

$$
f(x) = \frac{\tilde{f}(x)}{\int h(x)f(x) \, d\sigma}
$$

we obtain the following result.

Theorem 3 Suppose g, h and \tilde{f} are functions such that $g^2, h^2, \tilde{f}^2 \in \mathcal{L}_1(\mathbb{R}, \sigma)$,

$$
\int g(x)\tilde{f}(x) \, d\sigma = 0 \quad \text{and} \quad \int \tilde{f}^2(x) \, d\sigma \neq 0.
$$

Then

$$
\left(\int g^2(x) \, d\sigma \right)^p \left(\int h^2(x) \, d\sigma \right)^p - \left(\int g(x)h(x) \, d\sigma \right)^{2p} \geq \frac{(\int g^2(x) \, d\sigma)^p (\int h(x)\tilde{f}(x) \, d\sigma)^{2p}}{(\int \tilde{f}^2(x) \, d\sigma)^p}.
$$

(5)
Remark 1 The result of Theorem 2 can be improved. Suppose that g, h and f are as in Theorem 2 and G is a nondecreasing, superadditive function. Then

$$G\left(\int g^2(x) \, dx \int h^2(x) \, dx\right) - G\left(\left(\int g(x)h(x) \, dx\right)^2\right)$$

$$\geq G\left(\frac{\int g^2(x) \, dx}{\int f^2(x) \, dx}\right).$$

In particular, this inequality holds for any nondecreasing, convex function G.

3 APPLICATIONS TO MOMENTS

Let $F: \mathbb{R} \to \mathbb{R}$ be a probability distribution function and suppose that the corresponding mean $a = \int_{\mathbb{R}} x \, dF(x)$ exists. The rth central moment of F, when the integral exists, is defined by

$$\mu_r = \int_{\mathbb{R}} (x - a)^r \, dF(x).$$

We have trivially that $\mu_1 = 0$.

Suppose the distribution has variance unity, so that $\mu_2 = 1$. On setting $f(x) = 1$ and $g(x) = x - a$ in (5) we obtain since $\int dF(x) = 1$ and $\mu_1 = 1$ that

$$\left(\int h^2(x) \, dF(x)\right)^p - \left(\int (x - a)h(x) \, dF(x)\right)^{2p}$$

$$\geq \left(\int h(x) \, dF(x)\right)^{2p}.$$

By using substitutions of the form

$$h(x) = \sum_{k \in J} c(x - a)^k, \quad J \subseteq \mathbb{Z}$$

we can get different inequalities for the central moments.
Thus on putting $h(x) = (x-a)^r + \lambda(x-a)^s + \mu$ in (6), where $\lambda, \mu \in \mathbb{R}$ and $r, s \in \mathbb{Z}$, we get

$$(\mu_{2r} + \lambda^2 \mu_{2s} + \mu^2 + 2\lambda \mu_{r+s} + 2\mu \mu_r + 2\lambda \mu_s)^p \geq (\mu_{r+1} + \lambda \mu_{s+1})^{2p} + (\mu_r + \lambda \mu_s + \mu)^{2p}.$$

So in particular for $r = 2, s = 1$ we have

$$(\mu_4 + 2\lambda \mu_3 + \lambda^2 + \mu^2 + 2\mu)^p \geq (\mu_3 + \lambda)^{2p} + (1 + \mu)^{2p}$$

and for $\lambda = \mu = 0$ we have

$$(\mu_{2r})^p \geq (\mu_{r+1})^{2p} + (\mu_r)^{2p}$$

(cf. [1,3]).

4 Nonuniform Weights

In [1], Alić and Pečarić used the substitutions $z_i = 1/ \sum_{i=1}^n b_i (1 \leq i \leq n)$ to give a useful corollary to Theorem B.

*If (y_i) is an n-tuple such that $\sum y_i = 0$ and $\sum y_i^2 = n$, then

$$\left(\frac{1}{n} \sum b_i^2\right)^p \geq \left(\frac{1}{n} \sum y_i b_i\right)^{2p} + \left(\frac{1}{n} \sum b_i\right)^{2p}.$$ \hfill (7)

Using substitutions of the form

$$b_i = \sum_{k \in J} c_i y_i^k, \quad J \subseteq \mathbb{Z}, \quad i = 1, \ldots, n$$

and the notation $\alpha_r := (1/n) \sum_{i=1}^n y_i^r$ they obtained many improvements and generalizations of known statistical inequalities given in [2,3,7,8]. See also [4, pp. 339–340]. We show that the uniform weighting $1/n$ can be replaced by a general probabilistic weighting p_i with $\sum_{i=1}^n p_i = 1$.

Let F be the probability distribution function of the discrete random variable X with $P\{X = x_k\} = p_k$, $k \in N$, so that X has expectation $a = \sum_k x_k p_k$. If the variance of X is equal to unity, that is,
\[\sum_k (x_k - a)^2 p_k = 1, \text{ then (6) assumes the form} \]

\[\left(\sum_i p_i b_i^2 \right)^p \geq \left(\sum_i p_i b_i \right)^{2p} + \left(\sum_i p_i y_i b_i \right)^{2p}, \]

where \(y_i := x_i - a \). In the case \(p_i = 1/n \) (1 \(\leq i \leq n \)) this reduces to (7).

5 MULTIPLE LINEAR CONSTRAINTS

We now proceed to higher-dimensional versions of Theorems A and 1. We start with the former, replacing (1) with sets of constraints

\[\sum_{i=1}^{n} z_i a_{i,j} = 0 \quad (1 \leq j \leq m) \]

and

\[\sum_{i=1}^{n} z_i b_{i,j} = 1 \quad (1 \leq j \leq r). \]

Typically we expect \(m + r < n \) in applications.

We shall assume that the columns of the matrix \(A_0 = (a_{i,j}) \) are linearly independent, which by Gram’s inequality (see, for example, [5, Ch. 20 Theorem 1]) implies that the matrix \(A := A_0^T A_0 \) be invertible.

Theorem 4 Let \(A_0, B_0 \) be respectively \(n \times m \) and \(n \times r \) real matrices and let \(z \) be a real column \(n \)-vector satisfying

\[z^T A_0 = 0 \quad \text{and} \quad z B_0 = e_r^T, \quad (8) \]

where \(e_r \) represents the column \(t \)-vector \((1, 1, \ldots, 1)^T\). We suppose that the columns of \(A_0 \) are linearly independent, so that \(A := A_0^T A_0 \) is invertible. We define \(B := B_0^T B_0, \ C := A_0^T B_0 \) and suppose that \(B_0 \) is such that \(B - C^T A^{-1} C \) is also invertible. We denote its inverse by \(K \). Then

\[z^T z = \sum_{i=1}^{n} z_i^2 \geq e_r^T K e_r, \]
with equality if and only if

$$z = (B_0 - A_0 A^{-1} C) K e_r. \quad (9)$$

Proof The vector y given by the right-hand side of (9) satisfies

$$y^T A_0 = e_r^T K^T (B_0^T A_0 - C^T A^{-1} A_0^T A_0) = e_r^T K^T (C^T - C^T A^{-1} A) = 0$$

and

$$y^T B_0 = e_r^T K^T (B_0^T B_0 - C^T A^{-1} A_0^T A_0) = e_r^T K (B - C^T A^{-1} C) = e_r^T,$$

and so meets the conditions of the enunciation. Also, if z is any solution to (8), then

$$z^T y = z^T (B_0 - A_0 A^{-1} C) K e_r = e_r^T K e_r,$$

and in particular

$$y^T y = \sum_{i=1}^{n} y_i^2 = e_r^T K e_r.$$

Any vector z subject to (8) therefore satisfies

$$z^T z - y^T y = \sum_{i=1}^{n} z_i^2 - \sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} (z_i - y_i)^2,$$

which gives the stated result.

For the integral result, we replace (3) by the set of constraints

$$\int g_j(x) f(x) \, d\sigma = 0 \quad (1 \leq j \leq m)$$

and

$$\int h_j(x) f(x) \, d\sigma = 1 \quad (1 \leq j \leq r).$$

We assume the functions g_j are linearly independent.
Theorem 5 Let σ be a nonnegative measure on \mathbb{R} and $f, g = (g_j), h = (h_j)$ respectively scalar, column m-vector and column r-vector valued functions from \mathbb{R} to \mathbb{R} with square-integrable components with respect to σ with

$$
\int g(x)f(x)\,d\sigma = 0 \quad \text{and} \quad \int h(x)f(x)\,d\sigma = e_r.
$$

Define matrices A, B, C by

$$
A_{i,j} = \int g_i(x)g_j(x)\,d\sigma,
$$

$$
B_{i,j} = \int h_i(x)h_j(x)\,d\sigma,
$$

$$
C_{i,j} = \int g_i(x)h_j(x)\,d\sigma.
$$

Let (g_i) be a linearly independent set, so that A is invertible, and suppose that the matrix $B - C^T A^{-1} C$ is invertible, with inverse K, say. Then

$$
\int f^2(x)\,d\sigma \geq e_r^T K e_r,
$$

with equality if and only if

$$
f = e_r^T K (h - C^T A^{-1} g).
$$

The proof parallels that of the previous theorem, mutatis mutandis.

References

[2] M. Lakshmanamurti, On the upper bound of $\sum_{i=1}^n x_i^m$ subject to the conditions $\sum_{i=1}^n x_i = 0$ and $\sum_{i=1}^n x_i^2 = n$, *Math. Student* 18 (1950), 111–116.

