Generalized Gram–Hadamard Inequality

FLORIN CONSTANTINESCU a and GÜNTER SCHARF b,*

a Fachbereich Mathematik, Johann Wolfgang Goethe Universität Frankfurt, Robert-Mayer-Str. 10, D-60054 Frankfurt am Main, Germany;
b Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland

(Received 31 October 1997; Revised 8 June 1998)

We generalize the classical Gram determinant inequality. Our generalization follows from the boundedness of the antisymmetric tensor product operator. We use fermionic Fock space methods.

Keywords: Gram–Hadamard inequalities

AMS 1991 Subject Classification: Primary: 15A15; Secondary: 45B05

Let \(\mathcal{H} \) be a Hilbert space with scalar product \((\cdot, \cdot)\), \(f_{ij} \in \mathcal{H} \) for \(i = 1, \ldots, r \), \(j = 1, \ldots, n \) and \(h_{kl} \in \mathcal{H} \) for \(k = 1, \ldots, s \), \(l = 1, \ldots, m \). We introduce the notations

\[
f_i = (f_{i1}, \ldots, f_{in}), \quad i = 1, \ldots, r,
h_k = (h_{k1}, \ldots, h_{km}), \quad k = 1, \ldots, s
\]
and

\[
F = \begin{pmatrix}
 f_1 \\
 \vdots \\
 f_r
\end{pmatrix}
= \begin{pmatrix}
 f_{11} & \cdots & f_{1n} \\
 \vdots & & \vdots \\
 f_{r1} & \cdots & f_{rn}
\end{pmatrix}
\]

\[
H = \begin{pmatrix}
 h_1 \\
 \vdots \\
 h_s
\end{pmatrix}
= \begin{pmatrix}
 h_{11} & \cdots & h_{1m} \\
 \vdots & & \vdots \\
 h_{s1} & \cdots & h_{sm}
\end{pmatrix}
\]

Further denote

\[
G_p(u; v) = \det\begin{pmatrix}
 (u_1, v_1) & \cdots & (u_1, v_p) \\
 \vdots \\
 (u_p, v_1) & \cdots & (u_p, v_p)
\end{pmatrix}
\]

for \(u = (u_1, \ldots, u_p); \ v = (v_1, \ldots, v_p), \ u_i, v_i \in \mathcal{H}, \ i = 1, \ldots, p \). Let \(\alpha = (\alpha_1, \ldots, \alpha_r), \beta = (\beta_1, \ldots, \beta_s), \alpha_i, \beta_j \in \mathbb{C}, \)

\[
G_n(F; \alpha) = \sum_{i,i' \leq r} \alpha_i^* \alpha_{i'} G_n(f_i; f_{i'}),
\]

\[
G_m(H; \beta) = \sum_{j,j' \leq s} \beta_j^* \beta_{j'} G_m(h_j; h_{j'}).
\]

where \(*\) denotes the complex conjugation in \(\mathbb{C} \). For \(u = v \), \(G_p(u; u) = G_p(u; u) = G_p(u) \) is the classical Gram determinant. Besides \(G_p(u) \geq 0 \), the Gram determinant satisfies the Gram (or Gram–Hadamard) inequality [1]:

\[
G_p(u_1, \ldots, u_p) \leq G_{p_1}(u_1, \ldots, u_{p_1}) G_{p_2}(u_{p_1+1}, \ldots, u_{p_2}), \quad p = p_1 + p_2.
\]

In the case where \(u_i, v_j \) are \(L^2 \)-functions, the generalization \(G_p(u, v) \) of the Gram determinant \(G_p(u) \) appeared in the theory of integral equations. It can be related to the Slater determinants over \(u \) and \(v \) by the Landsberg integral formula [2,3] but this will not interest us here.

In order to get our generalized Gram inequality in a compact form we will write \(F \otimes H \) and \(\alpha \otimes \beta \) for tensor products of matrices and vectors, respectively. We prove
THEOREM Suppose that the dimension of the linear span generated by
$f_{ij}, i = 1, \ldots, r, j = 1, \ldots, n$ is not higher than n or the dimension of the
linear span generated by $h_{ij}, i = 1, \ldots, s, j = 1, \ldots, m$ is not higher than
m. Then the following generalized Gram–Hadamard inequalities hold:

\[G_n(F; \alpha) \geq 0, \quad (2a) \]

\[G_{n+m}(F \otimes H; \alpha \otimes \beta) \leq G_n(F; \alpha)G_m(H; \beta). \quad (2b) \]

Before going into the proof of the theorem we write (2b) in the
explicit form for the convenience of the reader

\[
\sum_{1 \leq i, i' \leq r} \alpha_i^* \alpha_i' \sum_{1 \leq k, k' \leq s} \beta_k^* \beta_k' \leq \sum_{1 \leq i, i' \leq r} \alpha_i^* \alpha_i' G_n(f_i; f_i') \sum_{1 \leq k, k' \leq s} \beta_k^* \beta_k' G_m(g_k; g_k'). \quad (3)
\]

Note that (1) can be obtained as a special case of (3) by taking $r = s = 1$
and cancelling the α, β-constants. In the proof to follow we use
fermionic Fock space methods borrowed from physics [4]. Going
through the proof the mathematically oriented reader will find out that
in fact we simply exploit boundedness of the antisymmetric tensor
product operator, writing out this property in a form convenient for our
purposes.

Proof We concentrate on fermionic Fock space methods (see for
instance [4]). Consider (smeared) fermionic annihilation and creation
operators $a(f), a^+(f)$ satisfying

\[
\{a(f), a(g)\} = 0 = \{a^+(f), a^+(g)\},
\]

\[
\{a(f), a^+(g)\} = (f, g), \quad (4)
\]

where $a^+(f)$ is the adjoint of $a(f)$ and $\{\cdot, \cdot\}$ is the anticommutator.

In the L^2-realization the action in the fermionic Fock–Hilbert space is
as usual [4] given by

\[
(a(f) \psi)^{(n)}(x_1, \ldots, x_n) = \sqrt{n+1} \int \! \text{d}x f(x)^* \psi^{(n+1)}(x, x_1, \ldots, x_n),
\]

\[
(a^+(f) \psi)^{(n)}(x_1, \ldots, x_n) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{i-1} f(x_i) \psi^{(n-1)}(x_1, \ldots, \hat{x}_i, \ldots, x_n),
\]

where $\psi^{(n)}$ is the nth functional derivative of ψ.
where \hat{x}_i indicates that the ith variable is to be omitted and
$\psi^{(n)}(x_1, \ldots, x_n)$ is totally antisymmetric. $\psi^{(0)} = c\Omega$ where $c \in \mathbb{C}$ and Ω is
the normalized vacuum.

Let
\[\Psi = \sum_{j=1}^{r} \alpha_j a^+(f_{j1}) \cdots a^+(f_{jn}), \quad (5) \]
\[\Phi = \sum_{k=1}^{s} \beta_k a^+(h_{k1}) \cdots a^+(h_{km}). \quad (6) \]

Then we have on the vacuum Ω
\[\|\Psi \Omega\|^2 = G(F; \alpha), \quad (7) \]
\[\|\Phi \Omega\|^2 = G(H; \beta) \quad (8) \]
and
\[\|\Psi \Phi \Omega\|^2 = \sum_{j,j', k,k'} \alpha_j^* \beta_k^* \alpha_{j'} \beta_{k'} G_{n+m}(f_j, g_k; f_{j'}, g_{k'}). \quad (9) \]

Suppose that the dimension of the linear span generated by $f_{ij}, j = 1, \ldots, n$ is not higher than n. The generalized Gram inequalities (2a) and (2b) are proved if we can show that the operator norm $\|\Psi\|^2$ is equal to
\[\|\Psi\|^2 = \sum_{j,j'} \alpha_j^* \alpha_{j'} G_n(f_j; f_{j'}) = G_n(F; \alpha). \quad (10) \]

It then follows from
\[\|\Psi \Phi \Omega\| \leq \|\Psi\| \|\Phi \Omega\| \]
or from
\[\|\Psi \Phi \Omega\| \leq \|\Psi\| \|\Phi\|. \]
Equation (10) is a consequence of Wick’s theorem about normal ordering of operator products which we write down with the following simplified notation:

\[
a(f_n) \cdots a(f_1) a^+(g_1) \cdots a^+(g_n) = a(f_n) \cdots a^+(g_n): \\
+ a(f_n) \cdots a^+(g_j) \cdots a^+(g_n): + \cdots + G(f_1, \ldots, f_n; g_1, \ldots, g_n). \tag{11}
\]

The r.h.s. is obtained from the l.h.s. by normal ordering which is denoted by double dots, that means by anticommuting all creation operators \(a^+ \) to the left. The “contractions” (indicated by the bracket overhead) represent the anticommutators \((f_n, g_j)\) (4) which appear in this process. The last term has all operators contracted in pairs in all possible ways and this gives just the Gram determinant.

Now let us consider the square

\[
(\Psi \Psi^+)^2 = \left[\sum_{j,j'} \alpha_j \alpha_{j'} a^+(f_{j1}) \cdots a^+(f_{jn}) a(f_{j'1}) \cdots a(f_{j'n}) \right]^2 \\
= \sum_{j,j'} \alpha_j \alpha_{j'} a^+(f_{j1}) \cdots a^+(f_{jn}) \\
\times a(f_{j'1}) \cdots a(f_{j'n}) a(f_{j'1}) \cdots a(f_{j'n}) \cdots a(f_{j'1}).
\]

In the last line we substitute Wick’s theorem (11). Then only the last term with Gram’s determinant contributes because all other terms contain at least two equal Fermi operators. This gives

\[
(\Psi \Psi^+)^2 = \sum_{j',j} \alpha^*_{j'} \alpha_j a^+(f_{j'1}, \ldots, f_{j'n}; f_{j1}, \ldots, f_{jn}) \\
\times \sum_{j',j'} \alpha_{j'} \alpha_j^* a^+(f_{j1}) \cdots a^+(f_{jn}) a(f_{j'1}) \cdots a(f_{j'1}) \\
= \left(\sum \alpha^* \alpha G \right) (\Psi \Psi^+)
\]

with obvious short-hand notation. Since \(\Psi \Psi^+ \) is self-adjoint this implies

\[
\| \Psi \Psi^+ \| = \left| \sum \alpha^* \alpha G \right| = \| \Psi \|^2 = \| \Psi^+ \|^2
\]
which is the desired result (10). Applications of the present inequality in physics are given in [5].

Remark We caution the reader that the generalized Gram inequality (2b) is generally not true without the restriction on the dimension of the linear span of f_{ij} or h_{ij}. Nevertheless, it seems that the violation of the inequality without the linear span condition is not very stringent and some variants of it still hold. We realized that this problem has interesting implications in two-dimensional physics and the theory of vertex operator algebras [5].

References

