On a Generalization of the Osgood Condition

W. MYDLARCZYK a,* and W. OKRASIŃSKI b,†

a Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland; b Institute of Mathematics, Technical University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra, Poland

(Received 2 June 1999; Revised 15 August 1999)

In this paper a generalization of the famous uniqueness Osgood condition is given. This new result is important for many applications.

Keywords: Generalized Osgood condition; Nonlinear integral equation

1991 Mathematics Subject Classification: 45G10, 45D05

1. INTRODUCTION

We consider nonlinear Volterra equations of the following type:

\[u(x) = \int_0^x (x - s)^{a-1} g(u(s)) \, ds \quad (x \geq 0, \alpha \geq 1), \]

(1.1)

where the kernel \(k \) and the nonlinearity \(g \) are nonnegative. Moreover \(g(u) = 0 \) for \(u \leq 0 \).

This type of equation appears in some applications such as nonlinear diffusion problems or shock wave propagation [1]. It is clear that \(u(x) \equiv 0 \) is the trivial solution of (1.1) but from the physical point of view only nonnegative solutions of the considered equation are interesting.

* Corresponding author. E-mail: mydlar@math.uni.wroc.pl.
† E-mail: wojciech@axel.im.pz.zgora.pl.
This problem is a very special case of the problem of the uniqueness of the trivial solution of the equation

\[u(x) = \int_0^x k(x, s, u(s)) \, ds \quad (x \geq 0). \]

If the trivial solution is unique one says that \(k \) is a Kamke function and this question appears in many problems not directly connected with the uniqueness of the solution [2]. In this paper we will consider only \(k(x, s, u) = (x - s)^\alpha g(u) \). If we put \(\alpha = 1 \) in (1.1), then the uniqueness of the trivial solution is equivalent to the uniqueness of the trivial solution to the problem: \(u' = g(u), \ u(0) = 0 \). If \(g \) is a nondecreasing continuous function \((g(0) = 0) \), then the uniqueness answer is given by

\[\int_0^\delta \frac{ds}{g(s)} = \infty. \]

If the last integral is finite, the problem \(u' = g(u), \ u(0) = 0 \) has a nontrivial solution.

Having in mind the physical applications of (1.1), different mathematicians since the eighties have tried to generalize the Osgood condition for (1.1). It has been shown [1,3–6] that for a nondecreasing continuous \(g \) \((g(0) = 0) \) the trivial solution is unique for (1.1) if and only if

\[\int_0^\delta \frac{ds}{\phi_0(s)} = \infty, \quad \text{where} \quad \phi_0(s) = s \left[\frac{g(s)}{s} \right]^{1/\alpha}. \quad (1.2) \]

Let us note that for \(\alpha = 1 \) we obtain the classical Osgood condition. But in some applications [7,8] there appear nonlinearities \(g \) which behave like \(u^p \) \((p \in (-1, 0)) \). In this case the generalized Osgood condition does not work. In recent papers [9,10] a new condition for the uniqueness of the trivial solution in the case of \(g \) not necessarily increasing has been presented. But this was done for an integer \(\alpha \geq 2 \). In this note we want to present the generalization of the condition (1.2) for all the \(\alpha > 1 \) and nonlinearities \(g \) general enough.

We assume

(i) \(g(s) \) is continuous for \(s > 0 \) and \(g(s)s^{1/(\alpha - 1)} \to 0 \) as \(s \to 0^+; \)

(ii) there exists \(m \geq 0 \) such that \(g(s)s^m \) is nondecreasing in the right-hand side vicinity of zero.
Now we can formulate

Theorem Let \(a > 1 \) and let \(g \) satisfy (i) and (ii). Then the trivial solution \(u(x) = 0 \) is unique if and only if

\[
\int_0^6 \frac{ds}{\phi(s)} = \infty, \quad \text{where} \quad \phi(s) = s^{(a-2)/(a-1)}[\psi(s)]^{1/\alpha} \tag{1.3}
\]

and

\[
\psi(s) = s^{2-\alpha} \int_0^s (s-t)^{a-2}g(t)t^{-(a-2)/(a-1)} dt. \tag{1.4}
\]

Remark 1.1 We shall prove theorem in the following equivalent form:

Equation (1.1) has a nontrivial solution, i.e. a continuous function \(u \) such that \(u(x) > 0 \) for \(x > 0 \), if and only if

\[
\int_0^6 \frac{ds}{\phi(s)} < \infty.
\]

Remark 1.2 If \(g \) is a nondecreasing continuous function, then an easy comparison of \(\phi \) with \(s(g(s)/s)^{1/\alpha} \) shows that the conditions (1.2) and (1.3) are equivalent.

Remark 1.3 One can check easily that in the case \(g(u) = u^{-\beta}, \beta \geq 1/(\alpha - 1) \) Eq. (1.1) only has the trivial solution. Because of this we assume in (i) that \(\lim_{s \to 0^+} g(s)s^{1/(\alpha - 1)} = 0 \) If (1.1) has a nontrivial solution, then the condition \(\lim_{s \to 0^+} g(s)s^{1/(\alpha - 1)} = 0 \) is equivalent to the following one \(\int_0^s g(s)s^{-(2)/(\alpha - 1)}ds < \infty \). It is also known [10] that the last condition is necessary for the existence of nontrivial solutions of (1.1) in the case \(\alpha \geq 2 \). The case \(\alpha \in (1,2) \) is still open.

Remark 1.4 Slight modifications of assumptions (i) and (ii) allow us also to consider \(g \) which behave at the origin like \(|\sin(1/x)| \) [10].

2. Main Steps of the Proof of the Theorem

The proof of the theorem is based mainly on some *a priori* estimates of nontrivial solutions and properties of auxiliary functions. Since similar
arguments to those used in [10] apply to the case $\alpha \geq 2$, we concentrate on
$\alpha \in (1, 2)$. As in [11] we can show

Lemma 2.1 Let μ be a Borel measure on $[0, a]$ ($a > 0$). Then the function

$$ u(x) = \int_0^x (x - s)^\beta \, d\mu(s) \quad (\beta > 0) $$

is absolutely continuous and there exists constants $c_1, c_2 > 0$ such that

$$ c_1 u'(x)^\beta \leq \int_0^x (u(x) - u(s))^{\beta - 1} \, d\mu(s) \leq c_2 u'(x)^\beta $$

for $x \in [0, a]$.

Remark 2.1 The function $x^{-\beta} u(x)$ is nondecreasing.

Lemma 2.2 Let $\alpha > 1$. Then the nontrivial solution of (1.1) is increasing
and there exist constants $c_1, c_2 > 0$ such that

$$ c_1 v(x)^{\alpha - 1} \leq \int_0^x (x - s)^{\alpha - 2} g(s)[v(s)]^{-1} \, ds \leq c_2 v(x)^{\alpha - 1}, \quad (2.1) $$

where $v(x) = u'(u^{-1}(x))$.

To prove Lemma 2.2 we apply the results of Lemma 2.1 to (1.1) with
$\beta = \alpha - 1$ and $d\mu(s) = g(u(s)) \, ds$.

Throughout, a function $f: [0, a] \to [0, \infty)$ for which there exists a constant $c > 0$ such that

$$ f(x) \leq cf(y) \quad \text{for } 0 < x < y \leq a $$

will be called an almost monotonous function.

Lemma 2.3 Let $\alpha \in (1, 2)$. Then the function ψ defined by (1.4) is almost
monotonous.

Proof of Lemma 2.3 First we note that

$$ \psi(s) = \int_0^s (s - t)^{\alpha - 2}[(s - t) + t]^{2 - \alpha} \psi_1(t) \, dt, $$

where $\psi_1(s) = g(s)s^{-(\alpha - 2)/(\alpha - 1)}$.
We introduce the following auxiliary functions:

\[
\psi_2(s) = \int_0^s \psi_1(t) \, dt + \int_0^s (s - t)^{\alpha - 2} t^{1 - \alpha} \psi_1(t) \, dt,
\]

\[
\psi_3(s) = \psi_1(s)s + m \int_0^s \psi_1(t) \, dt,
\]

where \(m \) is given by (ii) and

\[
\psi_4(s) = \int_0^s \psi_1(t) \, dt + \int_0^s (s - t)^{\alpha - 2} t^{1 - \alpha} \psi_3(t) \, dt.
\]

Making the following observations

\[
\psi_3(s) = \lim_{\delta \to 0^+} \int_\delta^s t^{-m} \, d(t^{m+1} \psi_1(t))
\]

and

\[
\int_0^s (s - t)^{\alpha - 2} t^{1 - \alpha} \psi_3(t) \, dt = \int_0^1 (1 - t)^{\alpha - 2} t^{1 - \alpha} \psi_3(st) \, dt,
\]

we infer that the functions \(\psi_3 \) and \(\psi_4 \) are nondecreasing. Furthermore, we note that

\[
\psi_2(s) \leq \psi_4(s) \leq \max(\gamma, 1 + \gamma m) \psi_2(s) \quad (s \in (0, a]),
\]

where \(\gamma = \int_0^a (s - t)^{\alpha - 2} t^{1 - \alpha} \, dt \). Thus \(\psi_2 \) is almost monotonous.

Finally, we easily see that

\[
c_1 \psi_2(s) \leq \psi(s) \leq c_2 \psi_2(s) \quad (s \in (0, a])
\]

for some constants \(c_1, c_2 > 0 \), which gives our assertion.

Now we can prove the lemma:

Lemma 2.4 Let \(\phi \) be given by (1.3) and \(u \) be a nontrivial solution to (1.1). Then there exist constants \(c_1, c_2 > 0 \) such that

\[
c_1 \phi(x) \leq v(x) \leq c_2 \phi(x) \quad (x \in (0, a]), \tag{2.2}
\]

where \(v(x) = u'(u^{-1}(x)) \).
Proof of Lemma 2.4 Let $\alpha \in (1, 2)$. We shall denote

$$h(x) = \int_0^x (x-s)^{a-2} g(s)[v(s)]^{-1}ds$$

and $h_1(x) = \int_0^x g(s)[v(s)]^{-1}ds$.

We have the following relations

$$h_1(x) = \text{const} \int_0^x (x-s)^{1-\alpha} h(s) ds$$

and

$$h(x) = \int_0^x (x-s)^{a-2} h_1'(s) ds.$$

By (2.1) we can write

$$\psi_1(s) = h_1'(s)(s^2-\alpha v(s)^{\alpha-1})^{1/(\alpha-1)}$$

$$\geq \text{const} h_1'(s)(s^{2-\alpha} h(s))^{1/(\alpha-1)}.$$ \hspace{1cm} (2.3)

Since

$$\omega(s; x) = \int_0^s (x-t)^{a-2} t^{2-\alpha} h_1'(t) dt \leq s^{2-\alpha} h(s) \quad (0 < s < x),$$

by (2.3) we get

$$h_1'(s)\omega(s; x)^{1/(\alpha-1)} \leq \text{const} \psi_1(s)$$ \hspace{1cm} (2.4)

for $s \in (0, x]$. We also have the inequality

$$\psi(x) = \int_0^x ((x-s) + s)^{2-\alpha} (x-s)^{a-2} \psi_1(s) ds$$

$$\geq \text{const} \int_0^x \psi_1(s) ds + \text{const} \int_0^x (x-s)^{a-2} s^{2-\alpha} \psi_1(s) ds$$

(the constants are positive). By (2.4) we can write

$$\psi(x) \geq \text{const} \int_0^x h_1'(s)h_1(s)^{1/(\alpha-1)} ds$$

$$\quad + \text{const} \int_0^x (x-s)^{a-2} s^{2-\alpha} h_1'(s)\omega(s; x)^{1/(\alpha-1)} ds.$$ \hspace{1cm} (2.5)

Since the last integral is equal to $\text{const} \left[\omega(x; x)\right]^{\alpha/(\alpha-1)}$, by (2.5) we get

$$\psi(x) \geq \text{const} (h_1(x) + \omega(x; x))^{\alpha/(\alpha-1)}.$$ \hspace{1cm} (2.6)
Noting that

\[h_1(x) = \int_0^x (x - t)^{-2} (x - t)^{2-\alpha} h'(t) \, dt, \]

from (2.6) and the left-hand side of (2.1) we get

\[\psi(x) \geq \text{const} [x^{2-\alpha} h(x)]^{\alpha/(\alpha-1)} \geq \text{const} x^{(2-\alpha)/(\alpha-1)} \, \nu(x)^\alpha. \]

Hence we obtain the right-hand side of (2.2) for \(\alpha \in (1, 2) \). By the right-hand side of (2.2) and the monotonous properties of \(\psi \) we have

\[h(x) \geq \text{const} \int_0^x (x - s)^{-2} g(s) s^{-(\alpha-2)/(\alpha-1)} \, ds \, \psi(x)^{-1/\alpha}, \]

which gives

\[h(x) \geq \text{const} x^{\alpha-2} [\psi(x)]^{(\alpha-1)/\alpha}. \tag{2.7} \]

From (2.7) and the right-hand side of (2.1) we get the left-hand side of (2.2) for \(\alpha \in (1, 2) \). The lemma is proved.

Remark 2.2 If we consider the equation

\[u_\epsilon(x) = \epsilon x^{\alpha-1} + \int_0^x (x - s)^{\alpha-1} g(u_\epsilon(s)) \, ds \quad (\alpha > 1) \tag{2.8} \]

then putting \(\mu(s) = \epsilon \delta_0 + g(u_\epsilon(s)) \, ds \) and repeating our considerations we have

\[c_1 \left(\epsilon x^{\alpha-1} + \phi(x)^{\alpha-1} \right)^{1/(\alpha-1)} \leq v_\epsilon(x) \leq c_2 \left(\epsilon x^{\alpha-1} + \phi(x)^{\alpha-1} \right)^{1/(\alpha-1)}, \tag{2.9} \]

where \(c_1, c_2 > 0 \) and \(v_\epsilon(x) = u_\epsilon'(u_\epsilon^{-1}(x)) \).

Sketch of the Proof of Theorem If (1.1) has a nontrivial solution \(u \), then

\[u^{-1}(x) = \int_0^x (u^{-1})'(s) \, ds = \int_0^x [\nu(s)]^{-1} \, ds. \]
By (2.2) we get
\[\infty > u^{-1}(x) \geq \int_0^x [\phi(s)]^{-1} ds \]
and the necessary condition for the existence of nontrivial solutions is proved.

By Schauder-type arguments it can be shown that for every \(\epsilon \in (0, \epsilon_0) \) Eq. (2.8) has a nontrivial solution \(u_\epsilon \). Since all solutions satisfy (2.9), by the Arzela–Ascoli theorem [12] there exists a sequence \(\epsilon_n \to 0 \), as \(n \to \infty \) and the corresponding solutions \(u_n \) of (2.8) such that \(u_n(x) \) converges uniformly to a solution \(u(x) \) of (1.1) on the interval \([0, a]\) \((a > 0) \) as \(n \to \infty \).

Since by (2.9)
\[u_n^{-1}(x) \leq \text{const} \int_0^x \frac{ds}{\phi(s)} = F^{-1}(x), \]
or equivalently \(u_n(x) \geq F(x) \) on \([0, a]\) for all \(n \). This implies \(u(x) \geq F(x) \) on \([0, a]\) and \(u \) is a nontrivial solution to (1.1). Thus the sufficient condition for the existence of nontrivial solutions is proved.

References