Existence Theory for Nonlinear Volterra Integral and Differential Equations

ANETA SIKORSKA*

Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matecki 48/49, 60-769 Poznań, Poland

(Received 28 July 1999; Revised 6 January 2000)

In this paper we prove the existence theorems for the integrodifferential equation

\[y'(t) = f \left(t, y(t), \int_0^t k(t, s, y(s)) \, ds \right), \quad t \in I = [0, T], \]
\[y(0) = y_0, \]

where in first part \(f, k, y \) are functions with values in a Banach space \(E \) and the integral is taken in the sense of Bochner. In second part \(f, k \) are weakly–weakly sequentially continuous functions and the integral is the Pettis integral. Additionally, the functions \(f \) and \(k \) satisfy some boundary conditions and conditions expressed in terms of measure of noncompactness or measure of weak noncompactness.

Keywords: Integral equations; Existence theorem; Pseudo-solutions; Measures of noncompactness

1991 Mathematics Subject Classification: Primary 34G20, 34A60

1 INTRODUCTION

In this paper we establish some existence principles for integrodifferential operator equations and present existence result for integrodifferential and integral equations.

* E-mail: anetas@math.amu.edu.pl.
The paper is divided into two main sections. In Section 1 we prove some existence theorems for the problem

\[y'(t) = f\left(t, y(t), \int_0^t k(t, s, y(s)) \, ds\right), \]
\[y(0) = y_0, \]

where \(I = [0, T] \), \(E \) is a Banach space with the norm \(\| \cdot \| \), \(f, k, y \) are functions with values in a Banach space \(E \) and the integral is the Bochner integral.

In Section 2 we prove some existence theorem for the problem (1), where \(f, k, y \) are functions with values in a Banach space \(E \), \(f, k \) are functions weakly-weakly sequentially continuous and the integral is the Pettis integral [1]. The results of this paper extend existence theorems from Krzyśka [12], Cichoń [6], Meehan and O'Regan [13], O'Regan [16,17], Cramer et al. [7].

In this paper we use the measure of noncompactness developed by Kuratowski [11], and the measure of weak noncompactnes developed by de Blasi [4].

Let \(A \) be a bounded nonvoid subset of \(E \). The Kuratowski measure of noncompactness \(\alpha(A) \) is defined by

\[\alpha(A) = \inf\{\varepsilon > 0: \text{there exists } C \in \mathcal{K} \text{ such that } A \subset C + \varepsilon B_0\}, \]

where \(\mathcal{K} \) is the set of compact subsets of \(E \) and \(B_0 \) is the norm unit ball.

The de Blasi measure of weak noncompactness \(\beta(A) \) is defined by

\[\beta(A) = \inf\{t > 0: \text{there exists } C \in \mathcal{K}^w \text{ such that } A \subset C + tB_0\}, \]

where \(\mathcal{K}^w \) is the set of weakly compact subsets of \(E \) and \(B_0 \) is the norm unit ball.

The properties of measure of noncompactness \(\alpha(A) \) are:

\((1^0) \) if \(A \subset B \) then \(\alpha(A) \leq \alpha(B) \);

\((2^0) \) \(\alpha(A) = \alpha(\overline{A}) \), where \(\overline{A} \) denotes the closure of \(A \);

\((3^0) \) \(\alpha(A) = 0 \) if and only if \(A \) is relatively compact;

\((4^0) \) \(\alpha(A \cup B) = \max\{\alpha(A), \alpha(B)\} \);
\((5^0) \quad \alpha(\lambda A) = |\lambda|\alpha(A) \quad (\lambda \in \mathbb{R}) \);
\((6^0) \quad \alpha(A + B) \leq \alpha(A) + \alpha(B) \);
\((7^0) \quad \alpha(\text{conv } A) = \alpha(A) \).

The properties of weak measure of noncompactness \(\beta \) are analogous to the properties of measure of noncompactness, see \([2-5,14]\). Moreover, we can construct many other measures with the above properties, by using a scheme from \([5]\). We now gather some well-known definitions and results from the literature, which we will use throughout this paper.

Definition 1 A function \(f : I \times E \times E \to E \) is \(L^1 \)-Carathéodory, if the following conditions hold:

(i) the map \(t \mapsto f(t, x, y) \) is measurable for all \((x, y) \in E^2 \);

(ii) the map \((x, y) \mapsto f(t, x, y) \) is continuous for almost all \(t \in I \).

Definition 2 A function \(k : I \times I \times B \to E \) is \(L^1 \)-Carathéodory, if the following conditions hold:

(i) the map \((t, s) \mapsto f(t, s, y) \) is measurable for all \(y \in B \);

(ii) the map \(y \mapsto f(t, s, y) \) is continuous for almost all \((t, s) \in I^2 \).

In the proof of the main theorem in Section 1 we will apply the following fixed point theorem.

Theorem 1 \([15]\) Let \(D \) be a closed convex subset of \(E \), and let \(F \) be a continuous map from \(D \) into itself. If for some \(x \in D \) the implication

\[
\overline{V} = \overline{\text{conv}}(\{x\} \cup F(V)) \implies V \text{ is relatively compact},
\]

holds for every countable subset \(V \) of \(D \), then \(F \) has a fixed point.

In Section 2 we will apply the following theorem:

Theorem 2 \([10]\) Let \(E \) be a metrizable locally convex topological vector space and let \(D \) be a closed convex subset of \(E \), and let \(F \) be a weakly sequentially continuous map of \(D \) into itself. If for some \(x \in D \) the implication

\[
\overline{V} = \overline{\text{conv}}(\{x\} \cup F(V)) \implies V \text{ is relatively weakly compact},
\]

holds for every subset \(V \) of \(D \), then \(F \) has a fixed point.
2 AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL EQUATIONS

Observe that the problem (1) is equivalent to the integral equation

\[y(t) = y_0 + \int_0^t f \left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz, \quad \text{for } t \in I. \quad (1') \]

Assume that

1. a function \(a \in L^1[0, T], \)
2. \(B = \{ x : \| x \| \leq b, b = \| y_0 \| + \int_0^T a(t) \, dt \}, \)
3. \(k \) is a \(L^1 \)-Carathéodory function from \(I^2 \times B \) into \(E, \)
4. \(f \) is a \(L^1 \)-Carathéodory function from \(I \times B \times B \) into \(E, \)
5. \(\| f(t, y(t), \int_0^t k(t, s, y(s)) \, ds) \| \leq a(t) \) almost everywhere on \(I \) for \(y \in \bar{B}, \) where \(\bar{B} = \{ y \in C[0, T] : \| y \| \leq b, b = \| y_0 \| + \int_0^T a(t) \, dt \}. \)

Theorem 3 Assume, that conditions (1)–(5) holds and in addition, that

6. there exists a constant \(c_1 \) such that \(\alpha(f(t, A, C)) \leq c_1 \max\{ \alpha(A), \alpha(C) \}, \) for any subsets \(A, C \) of \(B, \)
7. there exists an integrable function \(c_2 : I^2 \to \mathbb{R}^+ \) such that for every \(t \in I, \)
\(\varepsilon > 0 \) and for every bounded subset \(X \) of \(B \) there exists a closed subset \(I_\varepsilon \) of \(I \) such that \(\text{mes}(I \setminus I_\varepsilon) < \varepsilon \) and
\[\alpha(k(t, T \times X)) \leq \sup_{s \in T} c_2(t, s) \alpha(X) \] for any compact subset \(T \) of \(I_\varepsilon. \)
8. the zero function is the unique continuous solution of the inequality:
\[p(t) \leq c_1 T \sup_{z \in I} \int_0^T c_2(z, s) p(s) \, ds \] on \(I. \)

Then there exists at least one solution of problem (1).

Proof We define the operator \(N : C[0, T] \to C[0, T] \) by
\[Ny(t) = y_0 + \int_0^t f \left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz. \]
We require that $N : \tilde{B} \to \tilde{B}$ is continuous. Because

(i)

$$
\|Ny(t)\| = \left\| y_0 + \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
\leq \|y_0\| + \left\| \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
\leq \|y_0\| + \int_0^T \|f(z, y(z), \int_0^z k(z, s, y(s)) \, ds)\| \, dz
$$

$$
\leq \|y_0\| + \int_0^T a(t) \, dt = b
$$

so $Ny(t) \in B$, for $t \in I$.

Now we will show continuity of N.

(ii) Let $y_n \to y$ in $C[0, T]$. Then

$$
\|Ny_n - Ny\| = \sup_{t \in [0, T]} \left\| \int_0^t f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \, dz \right\|
$$

$$
- \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
\leq \sup_{t \in [0, T]} \left\| \int_0^t \left[f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right] \, dz \right\|
$$

$$
- \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
\leq \sup_{t \in [0, T]} \left\| \int_0^t \left[f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right] \, dz \right\|
$$

$$
- \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
\leq \sup_{t \in [0, T]} \left\| \int_0^t \left[f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right] \, dz \right\|
$$

$$
- \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|
$$

$$
+ \sup_{t \in [0, T]} \left\| \int_0^t \left[f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right] \, dz \right\|
$$

$$
- \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right\|.
$$
Because \(f \) and \(k \) are \(L^1 \)-Carathéodory functions and \(\|y_n - y\| \to 0 \) so \(\|Ny_n - Ny\| \to 0 \).

From (i) and (ii) follows that \(N : \tilde{B} \to \tilde{B} \) is continuous.

Now we will show that the set \(N(B) \) is equicontinuous subset. This follows from inequality:

\[
\|Ny(t) - Ny(\tau)\| = \sup_{t \in [0,T]} \left\| \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds\right) \, dz \right\|
\leq \sup_{t \in [0,T]} \int_0^t \left\| f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds\right) \right\| \, dz
\leq \int_0^t a(z) \, dz \quad \text{for every } y \in B.
\]

Observe that the fixed point of the operator \(N \) is the solution of the problems (1) and (1'). Now we prove that fixed point of the operator \(N \) exists using fixed point Theorem 1.

Let \(V \subset \tilde{B} \) be a countable set and \(\tilde{V} = \overline{\text{conv}}(N(V) \cup \{x\}) \). Because \(V \) is an equicontinuous then \(t \mapsto v(t) = \alpha(V(t)) \) is continuous on \(I \). Let \(t \in I \) and \(\varepsilon > 0 \). Using the Lusin’s theorem, there exists a compact subset \(I_\varepsilon \) of \(I \) such that \(\text{mes}(I \setminus I_\varepsilon) \leq \varepsilon \) and a function \(s \mapsto c_2(t, s) \) is continuous on \(I_\varepsilon \). We divide on interval \(I = [0, T] \): \(0 = t_0 < t_1 < \cdots < t_n = T \), like this

\[
\|c_2(t, s)v(r) - c_2(t, u)v(z)\| < \varepsilon \quad \text{for } s, r, u, z \in T_i = D_i \cap I_\varepsilon,
\]

where \(D_i = [t_{i-1}, t_i], \ i = 1, 2, \ldots, n. \) Let \(V_i = \{u(s): u \in V, s \in D_i\} \).

We notice

\[
\alpha\left(\int_I k(t, s, V(s)) \, ds\right) \leq \alpha\left(\int_{I_\varepsilon} k(t, s, V(s)) \, ds + \int_{I \setminus I_\varepsilon} k(t, s, V(s)) \, ds\right)
\leq \alpha\left(\int_{I_\varepsilon} k(t, s, V(s)) \, ds\right) + \varepsilon_1,
\]

where \(\varepsilon_1 \to 0 \) if \(\varepsilon \to 0 \).
and

\[
\int_I k(z, s, V(s)) \, ds \subset \sum_{i=1}^{n} \int_{T_i} k(z, s, V(s)) \, ds \\
\subset \sum_{i=1}^{n} \operatorname{mes} T_i \overline{\operatorname{conv}} k(z, T_i \times V_i).
\]

Using the properties of measure of noncompactness \(\alpha\) we have

\[
\alpha\left(\int_I k(z, s, V(s)) \, ds\right) \leq \sum_{i=1}^{n} \operatorname{mes} T_i \alpha(k(z, T_i \times V_i)) \\
\leq \sum_{i=1}^{n} \operatorname{mes} T_i \sup_{s \in T_i} c_2(z, s)\alpha(V_i) \\
= \sum_{i=1}^{n} \operatorname{mes} T_i c_2(z, q_i) v(s_i),
\]

where \(q_i \in T_i, s_i \in D_i\).

Moreover, because \(\|c_2(t, s)v(s) - c_2(t, q_i)v(s_i)\| < \varepsilon\) for \(s \in T_i\) we have

\[
\sum_{i=1}^{n} \operatorname{mes} T_i c_2(t, q_i) v(s_i) \\
\leq \sum_{i=1}^{n} \operatorname{mes} T_i \|c_2(t, q_i)v(s_i) - c_2(t, s_i)v(s_i)\| + \sum_{i=1}^{n} \operatorname{mes} T_i c_2(t, s_i)v(s_i) \\
\leq \varepsilon_2 + \sum_{i=1}^{n} \operatorname{mes} T_i c_2(t, s_i)v(s_i),
\]

where \(\varepsilon_2 \to 0\) if \(\varepsilon \to 0\). So

\[
\alpha\left(\int_I k(z, s, y(s)) \, ds\right) \leq \int_{I_\varepsilon} c_2(z, s)v(s) \, ds + \varepsilon_2
\]

then, because \(\varepsilon_2 \to 0\) if \(\varepsilon \to 0\) so

\[
\alpha\left(\int_I k(z, s, y(s)) \, ds\right) \leq \int_I c_2(z, s)v(s) \, ds.
\]
Because $\bar{V} = \overline{\text{conv}}(N(V) \cup \{x\})$, then by the property of measure of noncompactness we have
\begin{align*}
\alpha(V(t)) &= \alpha(\overline{\text{conv}}(N(V(t)) \cup \{x\})) \\
&\leq \alpha(\int_0^t f(z, V(z)), \int_0^z k(z, s, V(s)) \, ds) \, dz \\
&\leq \int_0^t \alpha(f(z, V(z)), \int_0^z k(z, s, V(s)) \, ds) \, dz \\
&\leq \int_0^t c_1 \cdot \max(\alpha(V(z))), \alpha(\int_0^z k(z, s, V(s)) \, ds) \, dz \\
&\leq c_1 \cdot T \cdot \sup_{z \in I} \alpha(\int_0^z k(z, s, V(s)) \, ds) \\
&\leq c_1 \cdot T \cdot \sup_{z \in I} \int_I c_2(z, s) v(s) \, ds.
\end{align*}
So
\begin{align*}
v(t) &\leq c_1 \cdot T \sup_{z \in I} \int_0^T c_2(z, s) v(s) \, ds.
\end{align*}

By (8) we have that $v(t) = \alpha(V(t)) = 0$. Using Arzelá–Ascoli’s theorem we obtain that V is relatively compact. By Theorem 1 the operator N has a fixed point. This means that there exists a solution of problem (1).

Remark Theorem 1 extends the existence theorem from Meehan and O’Regan [13] and O’Regan [17].

3 AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL EQUATIONS IN WEAK SENSE

In this part we prove a theorem for the existence of pseudo-solutions to the Cauchy problem
\begin{align*}
y'(t) &= f(t, y(t), \int_0^t k(t, s, y(s)) \, ds), \\
y(0) &= y_0
\end{align*}
in Banach spaces. Functions f and k will be assumed Pettis integrable but this assumption is not sufficient for the existence of solutions. We impose a weak compactness type condition expressed in terms of measures of weak noncompactness. Throughout this part $(E, \| \cdot \|)$ will
denote a real Banach space, E^* the dual space. Unless otherwise stated, we assume that "\int" denotes the Pettis integral.

A function $g : E \rightarrow E$ is said to be weakly–weakly sequentially continuous if for each weakly convergent sequence $(x_n) \subset E$, a sequence $(g(x_n))$ is weakly convergent in E.

Fix $x^* \in E^*$, and consider the equation

\[(9) \quad (x^* x)'(t) = x^* f(t, x(t), \int_0^t k(t, s, x(s)) \, ds), \quad t \in I.\]

Now, we can introduce the following definition:

Definition 3 [6,8] A function $x : I \rightarrow E$ is said to be a pseudo-solution of the Cauchy problem (2) if it satisfies the following conditions:

(i) $x(\cdot)$ is absolutely continuous,
(ii) $x(0) = X_0$,
(iii) for each $x^* \in E^*$ there exists an negligible set $A(x^*)$ (i.e. mes $A(x^*) = 0$), such that for each $t \notin A(x^*)$:

\[(x^* x)'(t) = x^* \left(f \left(t, x(t), \int_0^t k(t, s, y(s)) \, ds \right) \right).\]

In other words by a pseudo-solution of (2) we will understand an absolutely continuous function such that $x(0) = X_0$, and $x(\cdot)$ satisfies (2) a.e., for each $x^* \in E^*$.

In this part we use a weak measure of noncompactness of de Blasi’s β. It is necessary to remark that the following lemma is true:

Lemma 1 [9,14] Let $\mathcal{H} \subset C_w(I, E)$ be a family of strongly equicontinuous functions. Then the function $t \mapsto \nu(t) = \beta(\mathcal{H}(t))$ is continuous and $\beta(\mathcal{H}(I)) = \sup \{ \beta(\mathcal{H}(t)) : t \in I \}$.

Assume that in addition to (1), (2), (5) and (6),

(10) k is a Carathéodory’s weakly–weakly sequentially continuous function $I^2 \times B$ into E;
(11) f is Carathéodory’s weakly–weakly sequentially continuous function from $I \times B \times B$ into E;
(12) for any continuous function $y : I \rightarrow E$, functions $k(\cdot, \cdot, y(\cdot))$ and $f(\cdot, y(\cdot), \int_0^\cdot k(\cdot, s, y(s)) \, ds)$ are Pettis integrable.
THEOREM 4 Assume, in addition to (1), (2), (5) and (10–12) that

(13) there exists a constant c_3 such that for every interval $J \subseteq I$ and for any subsets A, C of B

$$\beta(f(J, A, C)) \leq c_3 \max\{\beta(A), \beta(C)\},$$

(14) there exists an integrable function $c_4 : I \to \mathbb{R}^+$ such that for every $t \in I$, $\varepsilon > 0$ and for every bounded subset X of B there exists a closed subset I_ε of I such that $\text{mes}(I \setminus I_\varepsilon) < \varepsilon$ and

$$\beta(k(J, J \times X)) \leq \sup_{s \in J} c_4(s) \beta(X), \quad \text{for any } J \subseteq I.$$

Then there exists at least one pseudo-solution of the problem (2).

Proof We define the operator $G : C[0, T] \to C[0, T]$ by

$$Gy(t) = y_0 + \int_0^t f(z, y(z), \int_0^z k(z, s, y(s)) \, ds) \, dz.$$

We require that $G : \tilde{B} \to \tilde{B}$ is weakly sequentially continuous, where

$$\tilde{B} = \left\{ y \in C[0, T] : \|y\| \leq b, \quad b = \|y_0\| + \int_0^T a(t) \, dt \right\}.$$

Because

(i) For any $y^* \in E^*$ such that $\|y^*\| \leq 1$ and for any $y \in B$,

$$\left| y^* \left[f(z, y(z), \int_0^z k(z, s, y(s)) \, ds) \right] \right|$$

$$\leq \|y^*\| \left\| f(z, y(z), \int_0^z k(z, s, y(s)) \, ds) \right\|$$

$$\leq \left\| f(z, y(z), \int_0^z k(z, s, y(s)) \, ds) \right\| \leq a(z)$$

so

$$|y^* Gy(t)| \leq |y^* y_0| + \int_0^t |y^* \left[f(z, y(z), \int_0^z k(z, s, y(s)) \, ds) \right] | \, dz$$

$$\leq \|y_0\| + \int_0^t a(t) \, dt \leq \|y_0\| + \int_0^T a(t) \, dt = b.$$
From here

$$\sup \{|y^* Gy(t)|; y^* \in E^*, \|y^*\| \leq 1\} \leq b \quad \text{and} \quad \|Gy(t)\| \leq b$$

so $Gy(t) \in B$.

(ii) Now we will show that set $G(\bar{B})$ is strongly equicontinuous subset.

This follows from the inequality

$$|y^*[Gy(t) - Gy(\tau)]| = \left| y^* \left[\int_\tau^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right] \right| \leq \int_\tau^t \left| y^* f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \right| \, dz \leq \int_\tau^t a(z) \, dz.$$

(iii) Now we will show weakly sequentially continuity of G.

Let $y_n \to y$ in $(C[0,T], \omega)$.

Then

$$|y^*[Gy_n(t) - Gy(t)]| = \left| y^* \left[\int_0^t f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \, dz \right] \right| \leq \int_0^t \left| y^* f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right| \, dz \leq \int_0^T \left| y^* f\left(z, y_n(z), \int_0^z k(z, s, y_n(s)) \, ds \right) \right| \, dz$$

$$= \left| y^* \left[\int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds \right) \, dz \right] \right|.$$
Because f and k are L^1-Carathéodory functions and $y_n \rightarrow y$ in $(C[0, T], \omega)$ so

$$|y^*[Gy_n(t) - Gy(t)]| \rightarrow 0.$$

From here

$$\sup\{y^*[Gy_n(t) - Gy(t)]: y^* \in E^*, \|y^*\| \leq 1\} \rightarrow 0.$$

From (i) and (iii), follows that $G : \tilde{B} \rightarrow \tilde{B}$ is weakly–weakly sequentially continuous.

Observe that the fixed point of the operator G is the pseudo-solution of the problem

$$y(t) = y_0 + \int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds\right) \, dz.$$

(2')

Now we prove that fixed point of the operator G exists using fixed point Theorem 2.

Let $V \subset \tilde{B}$ be a countable set and $\tilde{V} = \overline{\text{conv}}(G(V) \cup \{0\})$. Because V is equicontinuous then $t \rightarrow v(t) = \beta(V(t))$ is continuous on I (by Lemma 1).

Let $t \in I$ and $\varepsilon > 0$. Using the Luzin’s theorem, there exists a compact subset I_ε of I such that $\text{mes}(I \setminus I_\varepsilon) < \varepsilon$ and a function $s \rightarrow c_4(s)$ is continuous. We divide an interval $I = [0, T]: 0 = t_0 < t_1 < \cdots < t_n = T$, like this $\|c_4(s)v(r) - c_4(u)v(z)\| < \varepsilon$ for $s, r, u, z \in T = \bigcup_{i} I_i$, where $\mathcal{D}_i = [t_{i-1}, t_i]$.

We notice

$$\beta\left(\int_I f\left(z, V(z), \int_0^z k(t, s, V(s)) \, ds\right) \, dz\right)$$

$$\leq \beta\left(\int_{I_\varepsilon} f\left(z, V(z), \int_0^z k(t, s, V(s)) \, ds\right) \, dz\right)$$

$$+ \beta\left(\int_{I \setminus I_\varepsilon} f\left(z, V(z), \int_0^z k(t, s, V(s)) \, ds\right) \, dz\right)$$

$$\leq \beta\left(\int_{I_\varepsilon} f\left(z, V(z), \int_0^z k(t, s, V(s)) \, ds\right) \, dz\right) + \varepsilon'.$$
Using the properties of weak measure of noncompactness β we have
\[
\beta\left(\int f\left(z, V(z), \int_0^z k(t, s, V(s)) \, ds\right) \, dz\right)
\leq \beta\left(\sum_{i=1}^n \operatorname{mes} T_i \operatorname{conv} f\left(T_i, V(T_i), \sum_{i=1}^n \operatorname{mes} T_i \operatorname{conv} k(t_i, T_i, V_i)\right)\right)
\leq \sum_{i=1}^n \operatorname{mes} T_i \beta\left(f\left(T_i, V(T_i), \sum_{i=1}^n \operatorname{mes} T_i \operatorname{conv} k(t_i, T_i, V_i)\right)\right)
\leq \sum_{i=1}^n \operatorname{mes} T_i c_3 \cdot \max \beta(V(T_i)), \beta\left(\sum_{i=1}^n \operatorname{mes} T_i \operatorname{conv} k(T_i, T_i, V_i)\right)
\leq \sum_{i=1}^n \operatorname{mes} T_i c_3 \sum_{i=1}^n \operatorname{mes} T_i \beta(k(T_i, T_i, V_i))
\leq T c_3 \sum_{i=1}^n \operatorname{mes} T_i \sup_{s \in T_i} c_4(s) \beta(V_i)
= T c_3 \sum_{i=1}^n \operatorname{mes} T_i c_4(s_i) \beta(V(T_i))
= T c_3 \left[\sum_{i=1}^n \operatorname{mes} T_i c_4(t_i) \beta(V(t_i)) + \sum_{i=1}^n \operatorname{mes} T_i [c_4(s_i) \beta(V(t_i)) - c_4(t_i) \beta(V(t_i))]\right]
\]

From here
\[
\beta\left(\int f\left(z, V(z), \int_0^z k(z, s, V(s)) \, ds\right) \, dz\right)
\leq T c_3 \int_0^t c_4(s) \beta(V(s)) \, ds + \varepsilon_2,
\]

Because $\varepsilon_2 \to 0$ if $\varepsilon \to 0$ we have
\[
\beta(V(t)) \leq \beta(G(V(t)))
\leq \beta\left(\int_0^t f\left(z, y(z), \int_0^z k(z, s, y(s)) \, ds\right) \, dz\right)
\leq T c_3 \int_0^t c_4(s) v(s) \, ds.
\]
So

\[v(t) \leq Tc_3 \int_0^t c_4(s)\beta(V(s)) \, ds. \]

By Gronwall's inequality we have that \(v(t) = \beta(V(t)) = 0 \).
Using Arzelà–Ascoli's theorem we obtain that \(V \) is weakly relatively compact.

By Theorem 2 the operator \(G \) has a fixed point. This means that there exists a pseudo-solution of problem (2).

Remark Theorem 4 extends the existence theorems from Krzyśka [12], Cichoń [6], O'Regan [16] and others.

References