A Volterra Inequality with the Power Type Nonlinear Kernel

W. MYDLARCZYK*

Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspianskiego 27, 50-367 Wrocław, Poland

(Received 20 February 2000; In final form 12 April 2000)

In the paper, we characterize nonnegative, locally integrable functions k, for which the nonlinear convolution integral inequality $u(s) \leq k * g(u(s))$, with the power type nonlinearity g has nontrivial solutions.

Keywords and Phrases: Nonlinear Volterra integral equations; Integral inequalities; Trivial solutions; Uniqueness of the solution; The generalized Osgood condition

1991 Mathematics Subject Classifications: 45D05, 45G10, 45M20

1. INTRODUCTION

We study the integral inequality

$$u(x) \leq \int_0^x k(x-s)[u(s)]^\beta \, ds \quad (0 < x, 0 < \beta), \quad (1.1)$$

where $k > 0$ is a given locally integrable function. It is clear that $u(x) \equiv 0$ is a trivial solution of (1.1). Therefore, we are interested further in nontrivial continuous, nonnegative solutions u of (1.1).

*e-mail: mydlar@im.pwr.wroc.pl
This inequality arises in the study of uniqueness problem for a more general integral equation

\[y(t) = \int_0^t h(t, s, y(s)) ds + f(t), \quad t \geq 0 \]

in some Banach space. For example, if one considers two solutions \(y_1 \) and \(y_2 \), takes \(x(t) = \|y_1(t) - y_2(t)\| \) and assumes that

\[\|h(t, s, y_1(s)) - h(t, s, y_2(s))\| \leq k(t - s)\|y_1(s) - y_2(s)\|^{\beta}, \]

then one obtains inequality (1.1) for \(x(t) \).

First, we note that if \(1 \leq \beta \), then (1.1) has no nontrivial solutions. This due the fact that the integral operator

\[Tu(x) = \int_0^x k(x - s)[u(s)]^{\beta} ds \quad (\beta \geq 1) \]

is Lipschitz continuous in the class of nonnegative, continuous functions. Therefore, throughout the paper, we assume that \(0 < \beta < 1 \). It is also important to note that the existence of a nontrivial solution to (1.1) is equivalent to the existence of such a nontrivial solution to the corresponding equation

\[u(x) = \int_0^x k(x - s)[u(s)]^{\beta} ds \quad (0 < x, 0 < \beta < 1). \quad (1.2) \]

To see this, we consider any nontrivial solution \(v(x) \) of (1.1). To deal with nondecreasing functions, we define

\[\bar{v}(x) = \sup v(s), \quad 0 \leq s \leq x. \]

Since, the integral operator \(T \) has the following monotonicity properties:

\[Tw_1(x) \leq Tw_2(x) \quad \text{for any } 0 \leq w_1(x) \leq w_2(x) \]

and

\[Tw(x) \text{ is nondecreasing for any nondecreasing function } 0 \leq w(x), \]
we easily see that \(\tilde{v}(x) \) is also a nontrivial solution to (1.1). Furthermore, it follows from the inequality

\[
\tilde{v}(x) \leq \int_0^x k(x-s)[\tilde{v}(s)]^\beta ds \leq K(x)[\tilde{v}(x)]^\beta,
\]

where \(K(x) = \int_0^x k(s)ds \) that

\[
\tilde{v}(x) \leq K(x)^{1/(1-\beta)}.
\]

Now, we construct a function sequence

\[
\nu_0(x) = K(x)^{1/(1-\beta)}, \quad \nu_{n+1}(x) = T\nu_n(x), \quad n = 1, 2, \ldots.
\]

We verify directly that \(T\nu_0(x) \leq \nu_0(x) \) and as a consequence of this, we obtain

\[
\nu_{n+1}(x) = T\nu_n(x) \leq \nu_n(x) \quad \text{for } n = 1, 2, \ldots.
\]

Thus \(\{\nu_n(x)\} \) is a nonincreasing sequence of continuous functions. Since

\[
\tilde{v}(x) \leq \nu_0(x) \quad \text{and} \quad \tilde{v}(x) \leq T\tilde{v}(x) \leq T\nu_0(x) \leq \nu_0(x),
\]

we obtain \(\tilde{v}(x) \leq \nu_n(x) \) for \(n = 1, 2, \ldots \). Now, we consider the limit function

\[
u(x) = \lim_{n \to \infty} \nu_n(x) = \lim_{n \to \infty} T\nu_n(x) \geq \tilde{v}(x).
\]

Such a \(u(x) \) is a nontrivial solution of (1.2).

Equation (1.2) is a very special case of the equation

\[
u(x) = \int_0^x k(x-s)g(u(s))ds, \quad (1.3)
\]

where \(g \) is a continuous and nondecreasing function.

There is a wide literature, where the problem of the existence of nontrivial solutions for (1.3) was studied and some necessary and sufficient conditions were given, see [1, 4, 7]. They were formulated in the form of so called the generalized Osgood conditions. One of the most strength results was obtained for the logarithmicly concave
kernels k. For example, it is known that for such kernels the following condition

$$\int_0^\delta (K^{-1})' \left(\frac{s}{g(s)} \right) \frac{ds}{g(s)} < \infty,$$

where K^{-1} is inverse to K and $\delta > 0$ is sufficiently small, is necessary for the existence of nontrivial solutions to (1.3). Moreover, in the case $k(x) = x^{\alpha-1}$ or $\exp(-x^{-\alpha})$, $\alpha > 0$ this condition is also sufficient, see [2, 3, 5]. Unfortunately, if $g(u) = u^\beta$, $0 < \beta < 1$ this condition is satisfied for any k. On the other hand, it is known that if $k(x) = \exp(-\exp(x^{-\alpha}))$, then Eq. (1.3) has a nontrivial solution if and only if $0 < \alpha < 1$, see [6, 8]. Our aim is to characterize those kernels k, for which the inequality (1.1) or equivalently Eq. (1.2) has nontrivial solutions. Our main result is established in the following theorem.

Theorem The inequality (1.1) has a nontrivial solution if and only if $0 < \beta < 1$ and

$$\int_0^\delta K^{-1}(s) \frac{ds}{s(-\ln s)} < \infty,$$

where $\delta > 0$ is a sufficiently small number.

Remark 1 We directly verify that for the kernels $k(x) = \exp(-\exp(x^{-\alpha}))$ mentioned above the following inequalities $k(0.5x) \leq K(x) \leq k(2x)$ hold at the vicinity of zero. Now, we easily see that the condition in Theorem is satisfied in this case, if and only if $0 < \alpha < 1$.

Remark 2 A substitution $s = \tau^\alpha$ ($0 < \alpha < 1$) into the integral above changes the condition in Theorem to the following

$$\int_0^\delta K^{-1}(\tau^\alpha) \frac{d\tau}{\tau(-\ln \tau)} < \infty.$$

2. MAIN STEPS OF THE PROOF OF THEOREM

The necessity part of the theorem. Consider the nontrivial solution u of (1.2) constructed above. We note that Eq. (1.2) has also other nontrivial solutions. For example, the functions $u_c(x) = 0$ for $0 \leq x < c$
and \(u_c(x) = u(x - c) \) for \(x \geq c \) (\(c > 0 \)) are such solutions. Manipulating with \(c \), if necessary we can choose \(u \) such that \(u(0) = 0 \) and \(u(x) > 0 \) for \(x > 0 \). It follows from the construction described above that \(u \) is nondecreasing. Furthermore, the integration by parts gives

\[
u(x) = \int_0^x K(x - \tau)d[u(\tau)\beta], (2.1)\]

from which we infer that \(u \) is absolutely continuous and increasing. Finally, the substitution \(s = u(\tau) \) into integral (2.1) gives

\[
x = \int_0^x K(u^{-1}(x) - u^{-1}(s))d(s^\beta),
\]

where \(u^{-1} \) is inverse to \(u \). Let \(\phi(x) = x^{1/\beta} < x < 1 \). Splitting the integral above into two parts we obtain

\[
x \leq K(u^{-1}(x))\phi(x)^\beta + K(u^{-1}(x) - u^{-1}(\phi(x)))x^\beta. \tag{2.2}
\]

Since \(K(u^{-1}(x)) \to 0 \) as \(x \to 0 \), it follows from (2.2) that

\[
\frac{1}{2} x^{1-\beta} \leq K(u^{-1}(x) - u^{-1}(\phi(x))),
\]

or

\[
K^{-1}\left(\frac{1}{2} x^{1-\beta}\right) \leq u^{-1}(x) - u^{-1}(\phi(x)) \tag{2.3}
\]

for \(0 < x < \delta \), where \(\delta > 0 \) is sufficiently small.

Now, we note that for any \(0 < x < \delta \) the sequence

\[
x_0 = x, \quad x_{n+1} = \phi(x_n), \quad n = 1, 2, \ldots
\]

is decreasing and convergent to zero.

Since

\[
\int_{x_{n+1}}^{x_n} K^{-1}\left(\frac{1}{2} s^{1-\beta}\right) \frac{ds}{s(-\ln s)} \leq (-\ln \beta)K^{-1}\left(\frac{1}{2} x_n^{1-\beta}\right),
\]
it follows from (2.3) that
\[\int_0^x K^{-1}\left(\frac{1}{2}s^{1-\beta}\right) \frac{ds}{s(-\ln s)} < \infty \]
for \(0 < x < \delta\), which gives easily our assertion.

The sufficient part of the theorem. We are going to construct one of the solutions to (1.1). Let \(\psi(x) = x^{2/(1+\beta)} < x < 1\). We expect that the function \(F\) given by its inverse
\[F^{-1}(x) = \gamma \int_0^x K^{-1}\left(s^{1-\beta/2}\right) \frac{ds}{s(-\ln s)}, \quad \gamma = 1 / \ln(2/(1+\beta)) \]
is such a solution.

First, we note that
\[\int_0^x K(F^{-1}(x) - F^{-1}(s))d(s^\beta) \]
\[\geq \int_0^{\psi(x)} K(F^{-1}(x) - F^{-1}(s))d(s^\beta) \]
\[\geq K(F^{-1}(x) - F^{-1}(\psi(x)))\psi(x)^\beta. \]

We observe also that
\[F^{-1}(x) - F^{-1}(\psi(x)) = \gamma \int_{\psi(x)}^x K^{-1}\left(s^{1-\beta/2}\right) \frac{ds}{s(-\ln s)} \]
\[\geq \gamma K^{-1}\left(\psi(x)^{(1-\beta/2)}\right) \int_{\psi(x)}^x \frac{ds}{s(-\ln s)} \]
\[= K^{-1}\left(\psi(x)^{(1-\beta/2)}\right). \]

It follows from two inequalities above that
\[\int_0^x K(F^{-1}(x) - F^{-1}(s))d(s^\beta) \geq \psi(x)^{(1+\beta)/2} = x, \]
for \(0 < x < 1\). Now the substitution \(\tau = F(s)\) into the integral above shows that
\[\int_0^x K(x - s)d(F(\tau)^\beta) \geq F(x). \]
Finally, the integration by parts shows that $F(x)$ satisfies (1.1), which ends the proof.

References

