Dynamic Feedback Backstepping Control for a Class of MIMO Nonaffine Block Nonlinear Systems

Hai-Yan Li, Yun-An Hu, Jian-Cun Ren, and Min Zhu

Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai, Shandong 264001, China

Correspondence should be addressed to Yun-An Hu, hya507@sina.com

Received 23 November 2011; Revised 26 January 2012; Accepted 4 April 2012

Academic Editor: Christos H. Skiadas

Copyright © 2012 Hai-Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a class of MIMO nonaffine block nonlinear systems, a neural network- (NN-) based dynamic feedback backstepping control design method is proposed to solve the tracking problem. This problem is difficult to be dealt with in the control literature, mainly because the inverse controls of block nonaffine systems are not easy to resolve. To overcome this difficulty, dynamic feedback, backstepping design, sliding mode-like technique, NN, and feedback linearization techniques are incorporated to deal with this problem, in which the NNs are used to approximate and adaptively cancel the uncertainties. It is proved that the whole closed-loop system is stable in the sense of Lyapunov. Finally, simulations verify the effectiveness of the proposed scheme.

1. Introduction

In the last two decades, a number of efforts have been made on developing systematic design tools for control of uncertain nonlinear systems. Among the obtained results, feedback linearization techniques [1], adaptive backstepping design [2], and NN control [3, 4] are the representative theoretical achievements. The common assumptions made in most of the researches are that the systems to be controlled are affine and the nonlinearities are linearly parameterized by unknown parameters [2, 5]. NN-based adaptive control has relaxed the assumption on linear parameterized nonlinearities mostly in affine systems [4, 6, 7], which can deal with nonlinear parameterized nonlinearities. But some systems, such as chemical reactions [8] and flight control systems [9], cannot be expressed in an affine form.

There are three kinds of methods to deal with the controller design for nonaffine systems.

The idea of the first method is to transform a nonaffine system into an affine system with respect to a new control input by introducing an integrator [9–12]. In these attempts, an augmented system affine in \dot{u} is derived for control design by differentiation [13].
The second method directly controls a nonaffine system without transformation to an affine system [14–19]. Under the assumption that a control Lyapunov function (CLF) was available, Moulay and Perruquetti [16] obtained a sufficient condition to guarantee the existence of a continuous stabilizing control for nonaffine systems. Lin [14, 15] presented how nonaffine passive systems theory, together with the techniques of feedback equivalence and bounded control, could be used to explicitly construct a smooth state feedback control law that solved the problem of global stabilization for nonaffine nonlinear systems. New state feedback stabilizing controllers and sufficient conditions of asymptotic stability were proposed by Shiriaev and Fradkov [18] under assumptions similar to those in [14]. But it is difficult to find a CLF and to deal with controller design for systems with uncertainties.

The third one employs NNs, PI, or fuzzy-neural models to approximate the inverse system or the uncertainties in controller design for nonaffine nonlinear systems [20–28]. For a class of general nonaffine nonlinear systems, virtual-linearized-system- (VLS-) based design methods were proposed, in which the T-S fuzzy-neural model was employed to approximate a VLS of a real system with modelling errors and external disturbances [20, 26, 27]. Teo et al. [25] constructed a proportional-integral (PI) controller for the minimum-phase nonaffine system, which was an equivalent realization of an approximate dynamic inversion controller. Ge and Zhang [21] suggested using NNs as emulators of inverse systems for controller design of general nonlinear systems. Using the implicit function theorem and the mean value theorem, an NN was employed to approximate an ideal control signal which solved the tracking problem in [22]. In [29–32], instead of seeking a direct solution to the inverse problem, a solution was obtained by introducing an analytically invertible model and then employing an NN to compensate inversion error. By using implicit function theorem and Taylor series expansion, an observer-based adaptive fuzzy-neural control scheme was presented for the nonaffine nonlinear system in the presence of unknown structure of nonlinearities [33]. A neural synthesis method was considered for a class of multivariable nonaffine uncertain systems [28]. The method extended the previous approach developed in a single-input single-output system to a multi-input multi-output system without resorting to a fixed-point assumption or boundedness assumption on the time derivative of a control effectiveness term. The difficulty associated with these methods for nonaffine control systems is that an explicit inverting control design is, in general, not possible even if the inverse exists by the implicit function theorem [28]. Moreover, this kind of method relies on the approximation ability of NN.

Backstepping method is one of the breakthroughs in design of nonlinear control systems. Therefore, it has become one of the important and popular approaches for nonlinear systems [2]. This approach is based on a systematic procedure for the design of feedback control strategies suitable for the design of a large class of nonlinear systems with unmatched uncertainties, and it guarantees global regulation and tracking for the class of nonlinear systems transformable into the strict-feedback form. Developing a systematic synthesis method for general nonaffine systems still remains a challenging problem.

In this paper, we discussed the NN-based backstepping design for a class of uncertain nonaffine systems in block control form. The main contributions of this paper can be summarized as follows: (1) the proposed method avoids the difficulties to solve the inverse control in most literatures; (2) it does not rely on implicit function theorem and Taylor series expansion which makes the output tracking difficult; (3) it can deal with the systems with unmatched uncertainties; (4) introducing the sliding mode surface-like variables into backstepping procedure makes the design and stability analysis clear and simple; (5) a
systematic procedure is proposed for tracking control design for a class of block nonlinear systems that are nonaffine in the control inputs.

The rest of the work is organized as follows. The problem formulation is introduced in Section 2. The controller design and stability analysis are given in Section 3. Simulation example is given in Section 4 and followed by Section 5 which concludes the work.

2. Problem Formulation

The uncertain block nonaffine system considered in this paper is given by

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2), \\
\dot{x}_2 &= f_2(x_2, x_3), \\
&\vdots \\
\dot{x}_n &= f_n(x_n, u), \\
y &= x_1,
\end{align*}
\]

where \(x_i = [x_{i1} \cdots x_{im}]^T \in R^m, \bar{x}_i = [x_i^T \cdots x_i^T]^T, i = 1, 2, \ldots, n, u \in R^m, \) and \(y \in R^m,\) are state variables, input and output, respectively.

Remark 2.1. Although we assume \(x_i \in R^m,\) the proposed method is easy to extend to the other cases by pseudoinversion.

Assumption 2.2. \(f_i(\bar{x}_{i+1}) = [f_{i1}(\bar{x}_{i+1}), f_{i2}(\bar{x}_{i+1}), \ldots, f_{im}(\bar{x}_{i+1})]^T, i = 1, 2, \ldots, n,\) is an unknown smooth function vector.

The control objective is to design an adaptive NN controller for the system (2.1) such that the output tracks the desired signal \(y_d\) and all signals in the closed-loop system remain bounded. Let \(\|\cdot\|\) denote the 2-norm, and let \(\|\cdot\|_F\) denote the Frobenius norm.

3. Controller Design and Stability Analysis

In the following, introducing sliding mode-like technique, a systematic design method is proposed for a class of the uncertain block nonaffine systems.

Consider the following NN:

\[
h(x) = W^T S(V^T x),
\]

where \(W = [w_1 \ w_2 \cdots w_l]^T \in R^{p \times l}\) and \(V = [v_1 v_2 \cdots v_l]^T \in R^{N \times l}\) are the first-to-second layer and the second-to-third layer weights, respectively, \(h(x) \in R^p, p \geq 1, x \in R^N\) is the input vector, and the node number is \(l > 1:\)

\[
S(V^T x) = [s_p(v_1^T x) \ s_p(v_2^T x) \ \cdots \ s_p(v_{l-1}^T x) \ 1]^T,
\]

where \(s_p(x_a) = 1 / (1 + e^{-\gamma x_a})\) with the constant \(\gamma > 0.\)
Assumption 3.1. One has a function vector \(h(x) : \Omega \rightarrow R^r \); for any \(\sigma > 0 \), there always exist a Gauss function array \(S : R^N \rightarrow R^l \) and an optimal weight matrix \(W^* \) such that \(\| h(x) - W^T S(V^* x) \| \leq \sigma \), for all \(x \in \Omega \), where \(\Omega \) is a compact subset of \(R^N \). \(W^* S(V^* x) \) is the optimal approximation of \(h(x) \) using NN, and \(h(x) - W^* S(V^* x) \) is called reconstruction error. Define \(\bar{W} = W - W^* \) and \(\bar{V} = V - V^* \), where \(\bar{W} \) and \(\bar{V} \) are the estimated values of \(W^* \) and \(V^* \).

Assumption 3.2. \(J_{x_i}^{-1} \) and \(J_{u_i}^{-1} \), \(i = 2, \ldots, n \), exist. \(J_{x_i}(\bar{x}_{i-1}, x_i) = \partial f_{i-1}(\bar{x}_{i-1}, x_i) / \partial x_i \) and \(J_{u_i}(\bar{x}_{n,u}) = \partial f_n(\bar{x}_{n,u}) / \partial u \) denote the Jacobians with respect to \(x_i \) and \(u \), respectively.

Let \(f_{i-1}(\bar{x}_{i-1}, x_i) = f_{i-1,0}(\bar{x}_{i-1}, x_i) + \Delta f_{i-1,0}(\bar{x}_{i-1}, x_i) \), \(f_n(\bar{x}_{n,u}) = f_{n,0}(\bar{x}_{n,u}) + \Delta f_{n,0}(\bar{x}_{n,u}) \), \(J_{x_i}(\bar{x}_{i-1}, x_i) = J_{x_{i,0}}(\bar{x}_{i-1}, x_i) + \Delta J_{x_{i,0}}(\bar{x}_{i-1}, x_i) \), and \(J_{u_i}(\bar{x}_{n,u}) = J_{u_{i,0}}(\bar{x}_{n,u}) + \Delta J_{u_{i,0}}(\bar{x}_{n,u}) \), where \(f_{i-1,0}(\bar{x}_{i-1}, x_i) \), \(f_{n,0}(\bar{x}_{n,u}) \), \(J_{x_{i,0}}(\bar{x}_{i-1}, x_i) \), and \(J_{u_{i,0}}(\bar{x}_{n,u}) \) are the nominal parts of the functions \(f_{i-1}(\bar{x}_{i-1}, x_i) \), \(f_n(\bar{x}_{n,u}) \), \(J_{x_i}(\bar{x}_{i-1}, x_i) \), and \(J_{u_i}(\bar{x}_{n,u}) \), respectively, and \(\Delta f_{i-1,0}(\bar{x}_{i-1}, x_i) \), \(\Delta f_{n,0}(\bar{x}_{n,u}) \), \(\Delta J_{x_{i,0}}(\bar{x}_{i-1}, x_i) \), and \(\Delta J_{u_{i,0}}(\bar{x}_{n,u}) \) are the unknown parts.

Remark 3.3. Assumption 3.2 is not a strong condition imposed on the system. In fact, because \(J_{x_{i,0}}(\bar{x}_{i-1}, x_i) \) and \(J_{u_{i,0}}(\bar{x}_{n,u}) \) are the nominal parts of the functions \(J_{x_i}(\bar{x}_{i-1}, x_i) \) and \(J_{u_i}(\bar{x}_{n,u}) \), respectively, we can modify the values of the elements of \(J_{x_{i,0}}(\bar{x}_{i-1}, x_i) \) and \(J_{u_{i,0}}(\bar{x}_{n,u}) \) such that \(J_{x_i}^{-1} \) and \(J_{u_i}^{-1} \), \(i = 2, \ldots, n \), exist.

Lemma 3.4 (see [31, 34]). For the NN approximator, the approximation error can be described as

\[
\bar{W}^T S(V^T X) - W^T S(V^* X) = \bar{W}^T (S - \bar{S} \bar{V}^T X) + \bar{W}^T \bar{S} \bar{V}^T X + d_u, \tag{3.3}
\]

where \(\bar{S} = S(V^T X) \), \(\bar{S} = \text{diag}(s_{1,1}', s_{2,1}', \ldots, s_{n,1}') \), \(s_{i,1}' = [s_{i,0}(\bar{v}_i^T X) / dx_i |_{x_i = \tilde{x}_i^T X}] \), and the residual term \(d_u \) satisfies the following inequality:

\[
\| d_u \| \leq \| V^* \|_F \| \bar{W}^T \bar{S} \|_F \| X \| + \| W^* \|_F \| \bar{S} \bar{V}^T X \|_F + \| W^* \|_F \sqrt{I}. \tag{3.4}
\]

Step 1. Consider the first subsystem of (2.1) \(\dot{x}_1 = f_1(x_1, x_2) \). Taking its derivative gives

\[
\dot{x}_1 = J_{x_1}(x_1, x_2) f_1(x_1, x_2) + J_{x_2}(x_1, x_2) \dot{x}_2, \tag{3.5}
\]

where \(J_{x_1}(x_1, x_2) = \partial f_1(x_1, x_2) / \partial x_1 \) denotes the Jacobian with respect to \(x_1 \). Equation (3.5) can be rewritten as

\[
\dot{x}_1 = J_{x_1,0}(x_1, x_2) f_{10}(x_1, x_2) + J_{x_2,0}(x_1, x_2) x_2 + \Delta f_1(x_1, x_2), \tag{3.6}
\]

where \(\Delta f_1(x_1, x_2) = \Delta J_{x_1,0}(x_1, x_2) f_{10}(x_1, x_2) + J_{x_2,0}(x_1, x_2) \Delta f_{10}(x_1, x_2) \)

\[
+ \Delta J_{x_0,0}(x_1, x_2) \Delta f_{10}(x_1, x_2) + \Delta J_{x_0,0}(x_1, x_2) \dot{x}_2. \tag{3.7}
\]
Let $z_1 = x_1 - x_{1d}$ and $s_1 = z_1 + c_1 \dot{z}_1$, where $c_1 > 0$ is a constant, s_1 is a sliding mode surface-like vector, and x_{1d} is the reference signal of x_1. Taking the time derivative of s_1, we can obtain

\[
\dot{s}_1 = \dot{z}_1 + c_1 \ddot{z}_1
\]

\[
\dot{s}_1 = \dot{z}_1 + c_1 J_{x,0}(x_1, x_2) f_{10}(x_1, x_2) + c_1 J_{x,0}(x_1, x_2) \dot{x}_2 + c_1 \Delta f_1(x_1, x_2) - c_1 \ddot{x}_{1d}
\]

\[
\dot{s}_1 = \dot{z}_1 + c_1 J_{x,0}(x_1, x_2) f_{10}(x_1, x_2) + c_1 J_{x,0}(x_1, x_2) \dot{x}_2d
\]

\[
- J_{x,0}(x_1, x_2) z_2 + c_1 \Delta f_1(x_1, x_2) - c_1 \ddot{x}_{1d} + J_{x,0}(x_1, x_2) s_2.
\]

Let $z_2 = x_2 - x_{2d}$ and $s_2 = z_2 + c_1 \dot{z}_2$, where x_{2d} is the desired signal of x_2 and s_2 is a sliding mode surface-like vector.

Choose the virtual control as

\[
\dot{x}_{2d} = -[c_1 J_{x,0}(x_1, x_2)]^{-1} \left[c_1 J_{x,0}(x_1, x_2) f_{10}(x_1, x_2) + \hat{\dot{z}}_1 - J_{x,0}(x_1, x_2) z_2 + v_1 \right],
\]

where $v_i = k_i s_i - c_1 \ddot{x}_{1d} + \nu_{NN} - \nu_{tr}, \ i = 1, 2, \ldots, n, v_{tr}$, will be defined in (3.20), k_i is a diagonal matrix with its elements positive, and $\hat{\dot{z}}_i$ is the output of a tracking differentiator [35] with z_i as its input. The error between z_i and \hat{z}_i can be approximated by a neural network. ν_{NN} is the NN compensator, which is used to overcome the influence of the uncertainties in the system. According the approximation ability, we can assume that

\[
c_1 \Delta f_i(\overline{x}_i, x_{i+1}) + \Delta_i = W^* S_i \left(V^*_i X_i \right) + \varepsilon_i,
\]

where $W^* S_i \left(V^*_i X_i \right) + \varepsilon_i$ is the optimal approximation of $\Delta f_i(\overline{x}_i, x_{i+1}) + \Delta_i$, Δ_i is the uncertainty induced by the error between the output of the tracking differentiator \hat{z}_i and \dot{z}_i, namely, $\Delta_i = \dot{z}_i - \hat{\dot{z}}_i$, and $X_i = [\overline{x}_i^T, x_{i+1}^T, \hat{x}_i^T, 1]^T$ is the input of NN. $\| \varepsilon_i \| \leq \varepsilon_{iu}$ is the approximation error with constant $\varepsilon_{iu} > 0$.

Let

\[
\nu_{NN} = \hat{W}_i^* S_i \left(\hat{V}_i^* X_i \right), \quad i = 1, 2, \ldots, n.
\]

Substituting (3.9) into (3.8) leads to

\[
\dot{s}_1 = c_1 \Delta f_1(x_1, x_2) + \Delta_1 - c_1 \ddot{x}_{1d} + J_{x,0}(x_1, x_2) s_2 - v_1
\]

\[
= -c_1 \ddot{x}_{1d} + J_{x,0}(x_1, x_2) s_2 - v_1 + W_i^* S_i \left(V^*_i X_i \right) + \varepsilon_i.
\]

Substituting the expressions of v_1 and ν_{NN} into (3.12) gives

\[
\dot{s}_1 = -k_1 s_1 - \hat{W}_i^* S_i \left(\hat{V}_i^* X_i \right) + W_i^* S_i \left(V^*_i X_i \right) + \varepsilon_i + J_{x,0}(x_1, x_2) s_2 + \nu_{tr}.
\]
According to Lemma 3.4, (3.13) can be transformed into

\[
\dot{s}_1 = -k_1s_1 + f_{x_0}(x_1, x_2)s_2 \\
- \tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) - \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 - d_{u_1} + \varepsilon_1 + v_{lr}.
\]

(3.14)

We choose Lyapunov function as

\[
V_1 = \frac{1}{2} s_1^T \dot{s}_1 + \frac{1}{2} \text{tr} \left\{ \tilde{W}_1^T \Gamma_{W_1}^{-1} \tilde{W}_1 \right\} + \frac{1}{2} \text{tr} \left\{ \dot{\tilde{V}}_1^T \Gamma_{V_1}^{-1} \dot{\tilde{V}}_1 \right\},
\]

(3.15)

where \(\Gamma_{W_1} = \Gamma_{W_1}^T > 0 \) and \(\Gamma_{V_1} = \Gamma_{V_1}^T > 0 \) are constant design parameters. Taking the derivative of \(V_1 \), we have

\[
\dot{V}_1 = s_1^T \dot{s}_1 + \text{tr} \left\{ \tilde{W}_1^T \Gamma_{W_1}^{-1} \dot{\tilde{W}}_1 \right\} + \text{tr} \left\{ \dot{\tilde{V}}_1^T \Gamma_{V_1}^{-1} \dot{\tilde{V}}_1 \right\}
= s_1^T \left[-k_1s_1 + f_{x_0}(x_1, x_2)s_2 - \tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) - \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 - d_{u_1} + \varepsilon_1 + v_{lr} \right]
+ \text{tr} \left\{ \tilde{W}_1^T \Gamma_{W_1}^{-1} \dot{\tilde{W}}_1 \right\} + \text{tr} \left\{ \dot{\tilde{V}}_1^T \Gamma_{V_1}^{-1} \dot{\tilde{V}}_1 \right\}
= -k_1\|s_1\|^2 + \text{tr} \left\{ \tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) s_1^T \right\}
+ \text{tr} \left\{ \dot{\tilde{V}}_1^T \left(X_1 s_1^T \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 - \sigma_{V_1} \tilde{V}_1 \right) \right\} - s_1^T \dot{d}_{u_1} - \varepsilon_1 - \dot{v}_{lr}
- s_1^T \left[\tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) + \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 \right] + s_1^T f_{x_0}(x_1, x_2)s_2.
\]

(3.16)

Choose the following adaptive tuning laws as

\[
\dot{\tilde{W}}_1 = \Gamma_{W_1} \left[\left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) s_1^T - \sigma_{W_1} \tilde{W}_1 \right],
\]

\[
\dot{\tilde{V}}_1 = \Gamma_{V_1} \left(X_1 s_1^T \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 - \sigma_{V_1} \tilde{V}_1 \right),
\]

(3.17)

where \(\sigma_{W_1} > 0 \) and \(\sigma_{V_1} > 0 \) are small design parameters. Substituting (3.17) into (3.16) results in

\[
\dot{V}_1 = -k_1\|s_1\|^2 + \text{tr} \left\{ \tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) s_1^T \right\}
+ \text{tr} \left\{ \dot{\tilde{V}}_1^T \left(X_1 s_1^T \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 - \sigma_{V_1} \tilde{V}_1 \right) \right\} - s_1^T \dot{d}_{u_1} - \varepsilon_1 - \dot{v}_{lr}
- s_1^T \left[\tilde{W}_1^T \left(\dot{S}_1 - \dot{S}_1 \tilde{V}_1^TX_1 \right) + \tilde{W}_1^T \dot{S}_1 \tilde{V}_1^TX_1 \right] + s_1^T f_{x_0}(x_1, x_2)s_2.
\]

(3.18)

With the property \(\text{tr} \{yx^T\} = x^Ty \), (3.18) can be simplified as

\[
\dot{V}_1 = -k_1\|s_1\|^2 - \sigma_{W_1} \text{tr} \left\{ \tilde{W}_1^T \tilde{W}_1 \right\} - \sigma_{V_1} \text{tr} \left\{ \dot{\tilde{V}}_1^T \dot{\tilde{V}}_1 \right\} - s_1^T \dot{d}_{u_1} - \varepsilon_1 - \dot{v}_{lr} + s_1^T f_{x_0}(x_1, x_2)s_2.
\]

(3.19)
Design the robust term \(v_{ir} \) as

\[
v_{ir} = -\frac{s_i \left(\|\hat{W}_i^T S_i^T\|_F^2 \|X_1\|^2 + \|\hat{S}_i^T \hat{V}_1 X_1\|_F^2 + 2 \right) }{\eta_i}, \quad i = 1, 2, \ldots, n, \tag{3.20}
\]

where \(\eta_i > 0 \) is a small constant. After applying Lemma 3.4 and substituting (3.20) into (3.19), \(V_1 \) is upper bounded by

\[
V_1 \leq -k_1 \|s_1\|^2 - \sigma W_1 \text{tr} \left\{ \hat{W}_1^T \hat{W}_1 \right\} - \sigma V_1 \text{tr} \left\{ \hat{V}_1^T \hat{V}_1 \right\} - \frac{\|s_1\|^2 \left(\|\hat{W}_1^T S_1^T\|_F^2 \|X_1\|^2 + \|\hat{S}_1^T \hat{V}_1 X_1\|_F^2 + 2 \right) }{\eta_i} + s_i^T J_{x_{10}}(x_1, x_2) s_2 + \|s_i^T \| \left(\|V_1^*\|_F \|\hat{W}_1^T S_1^T\|_F \|X_1\| + \|W_1^*\|_F \|\hat{S}_1^T \hat{V}_1 X_1\| + \sqrt{\eta} \|W_1^*\|_F + \epsilon_{1u} \right). \tag{3.21}
\]

With the following properties [31]:

\[
-\sigma W_1 \text{tr} \left\{ \hat{W}_1^T \hat{W}_1 \right\} \leq \frac{\sigma W_1}{2} \|W_1^*\|_F^2 - \frac{\sigma W_1}{2} \|\hat{W}_1\|_F^2,
\]

\[
-\sigma V_1 \text{tr} \left\{ \hat{V}_1^T \hat{V}_1 \right\} \leq \frac{\sigma V_1}{2} \|V_1^*\|_F^2 - \frac{\sigma V_1}{2} \|\hat{V}_1\|_F^2,
\]

\[
\|s_i^T \| \|V_1^*\|_F \|\hat{W}_1^T S_1^T\|_F \|X_1\| \leq \frac{\|s_i^T\|^2}{\eta_i} \|\hat{W}_1^T S_1^T\|_F^2 \|X_1\|^2 + \frac{\eta_i}{4} \|V_1^*\|_F^2,
\]

\[
\|s_i^T \| \|W_1^*\|_F \|\hat{S}_1^T \hat{V}_1 X_1\| \leq \frac{\|s_i^T\|^2}{\eta_i} \|\hat{S}_1^T \hat{V}_1 X_1\|_F^2 + \frac{\eta_i}{4} \|W_1^*\|_F^2,
\]

\[
\|s_i^T \| \left(\sqrt{\eta} \|W_1^*\|_F + \epsilon_{1u} \right) \leq 2\frac{\|s_i^T\|^2}{\eta_i} + \frac{\eta_i}{4} \|W_1^*\|_F^2 + \frac{\eta_i}{4} \epsilon_{1u}^2.
\]

Equation (3.21) can be simplified as

\[
V_1 \leq -k_1 \|s_1\|^2 - \frac{\sigma W_1}{2} \|\hat{W}_1\|_F^2 - \frac{\sigma V_1}{2} \|\hat{V}_1\|_F^2 + b_1 + s_i^T J_{x_{10}}(x_1, x_2) s_2, \tag{3.23}
\]

where \(b_1 = [\eta_i (1/4) \|W_1^*\|_F^2 + (1/4) \|V_1^*\|_F^2 + (\epsilon_{1u})^2 + (\sigma W_1/2) \|W_1^*\|_F^2 + (\sigma V_1/2) \|V_1^*\|_F^2] \) is a bounded constant.

Step 2. Let us consider the subsystem \(\dot{x}_2 = f_2(\bar{x}_2, x_3) \). Taking its derivative leads to

\[
\dot{x}_2 = f_2(\bar{x}_2, x_3) + J_{x_3}(\bar{x}_2, x_3) \dot{x}_3, \tag{3.24}
\]
where \(f_{x_1}(x_2, x_3) = \frac{\partial f_2(x_2, x_3)}{\partial x_2} \) denotes the Jacobian with respect to \(x_2 \). Equation (3.24) can be rewritten as

\[
\dot{x}_2 = f_{x_1}(x_2, x_3) f_{x_2}(x_2, x_3) + f_{x_1}(x_2, x_3) \dot{x}_3 + \Delta f_2(x_2, x_3),
\]

(3.25)

where

\[
\Delta f_2(x_2, x_3) = \Delta f_{x_1}(x_2, x_3) f_{x_2}(x_2, x_3) + \Delta f_{x_1}(x_2, x_3) \Delta f_{x_2}(x_2, x_3)
\]

(3.26)

Taking its time derivative of \(s_2 \), we can obtain

\[
\dot{s}_2 = \dot{z}_2 + c_1 f_{x_1}(x_2, x_3) f_{x_2}(x_2, x_3) + c_1 f_{x_1}(x_2, x_3) \dot{x}_3 \dot{d}
\]

(3.27)

\[
- f_{x_1}(x_2, x_3) z_3 + c_1 \Delta f_2(x_2, x_3) - c_1 \dot{x}_2 d + f_{x_1}(x_2, x_3) s_3.
\]

Let \(z_3 = x_3 - x_3d \) and \(s_3 = z_3 + c_1 \dot{z}_3 \), where \(x_3d \) is the desired signal of \(x_3 \) and \(s_3 \) is a sliding mode surface-like vector.

Design a virtual control signal as

\[
\dot{x}_3d = -[c_1 f_{x_1}(x_2, x_3)]^{-1} \left\{ c_1 f_{x_1}(x_2, x_3) f_{x_2}(x_2, x_3) + \dot{z}_2 - f_{x_1}(x_2, x_3) z_3 + f_{x_1}^T(x_1, x_2) s_1 + v_2 \right\}.
\]

(3.28)

Choose Lyapunov function as

\[
V_2 = V_1 + \frac{1}{2} \dot{s}_2^T s_2 + \frac{1}{2} \text{tr} \left\{ \tilde{W}_2^T \Gamma_{W_2} \tilde{W}_2 \right\} + \frac{1}{2} \text{tr} \left\{ \tilde{V}_2^T \Gamma_{V_2} \tilde{V}_2 \right\},
\]

(3.29)

where \(\Gamma_{W_2} = \Gamma_{W_2}^T > 0 \) and \(\Gamma_{V_2} = \Gamma_{V_2}^T > 0 \) are constant design parameters.

Choose the following adaptive tuning laws:

\[
\dot{\tilde{W}}_2 = \Gamma_{W_2} \left[(\tilde{s}_2 - \tilde{s}_2^T X_2) s_2^T - \sigma_{W_2} \tilde{W}_2 \right],
\]

\[
\dot{\tilde{V}}_2 = \Gamma_{V_2} \left(X_2 s_2^T \tilde{W}_2 \tilde{s}_2 - \sigma_{V_2} \tilde{V}_2 \right),
\]

(3.30)

where \(\sigma_{W_2} > 0 \) and \(\sigma_{V_2} > 0 \) are small constants.
Figure 1: Curve of x_{11} in case of the system without uncertainties.

Taking (3.25)–(3.30) into account, we have

$$V_2 \leq -k_1\|s_1\|^2 - k_2\|s_2\|^2 - \frac{\sigma V_1}{2}\|\tilde{W}_1\|_F^2 - \frac{\sigma V_1}{2}\|\tilde{V}_1\|_F^2 - \sigma W_2 \text{tr}\{\tilde{W}_2^T\tilde{W}_2\}$$

$$- \sigma V_2 \text{tr}\{\tilde{V}_2^T\tilde{V}_2\}$$

$$- \frac{s_2}{\eta_2}\left(\frac{2}{\eta_2}\sum \|\tilde{W}_2^T\tilde{S}_2\|_F^2\|X_2\|^2 + \sum \|\tilde{S}_2^T\tilde{V}_2^T X_2\|_F^2 + 2\right) + s_2^T f_{x_0}(\bar{x}, x_3) s_3$$

$$+ \|s_2\|\left(\|V_2\|_F \|\tilde{W}_2^T\tilde{S}_2\|_F \|X_2\| + \|W_2\|_F \|\tilde{S}_2^T\tilde{V}_2^T X_2\|_F + \sqrt{\eta_2}\|W_2\|_F + \varepsilon_2 u\right) + b_1.

(3.31)

Similar to Step 1, (3.31) can be simplified as

$$\dot{V}_2 \leq -k_1\|s_1\|^2 - k_2\|s_2\|^2 - \frac{\sigma W_1}{2}\|\tilde{W}_1\|_F^2 + \frac{\sigma V_1}{2}\|\tilde{V}_1\|_F^2$$

$$- \frac{\sigma W_2}{2}\|\tilde{W}_2\|_F^2 + \frac{\sigma V_2}{2}\|\tilde{V}_2\|_F^2 + b_1 + b_2 + s_2^T f_{x_0}(\bar{x}, x_3) s_3,

(3.32)

where $b_2 = [\eta_2 (1/4)\|W_2\|_F^2 + (1/4)\|V_2\|_F^2 + (1/4)\|W_2\|_F^2 + \varepsilon_2 u) + (\sigma W_2/2)\|W_2\|_F^2 + (\sigma V_2/2)\|V_2\|_F^2]$ is a bounded constant.

Steps 3 to $n - 1$ are similar to Step 2, which are omitted here.

Step n. Let us consider the system $\dot{x}_n = f_u(\bar{x}_n, u)$. Taking its derivative leads to

$$\dot{x}_n = f_{x_n}(\bar{x}_n, u) f_n(\bar{x}_n, u) + f_u(\bar{x}_n, u) \dot{u},

(3.33)$$
where \(J(x_n, u) = \frac{\partial f_m(\bar{x}_n, u)}{\partial \bar{x}_n} \) denotes the Jacobian with respect to \(\bar{x}_n \). Equation (3.33) can be rewritten as

\[
\ddot{x}_n = J_{x_n,0}(\bar{x}_n, u)f_{m0}(\bar{x}_n, u) + f_{m0}(\bar{x}_n, u)\dot{u} + \Delta f_n(\bar{x}_n, u),
\]

(3.34)

where

\[
\Delta f_n(\bar{x}_n, u) = \Delta J_{x_n,0}(\bar{x}_n, u)f_{m0}(\bar{x}_n, u) + J_{x_n,0}(\bar{x}_n, u)\Delta f_{m0}(\bar{x}_n, u) \\
+ \Delta J_{x_n,0}(\bar{x}_n, u)f_{m0}(\bar{x}_n, u) + \Delta f_{x_n,0}(\bar{x}_n, u)\dot{u}.
\]

(3.35)
Let $z_n = x_n - x_{nd}$ and $s_n = z_n + c_1 \dot{z}_n$, where x_{nd} is the desired signal of x_n and s_n is a sliding mode surface-like vector. Taking its time derivative, we can obtain

$$
\dot{s}_n = \dot{z}_n + c_1 \ddot{z}_n \\
= \dot{z}_n + c_1 \int_{\tilde{x}_0} (\tilde{x}_n, u) f_{\tilde{z}_0}(\tilde{x}_n, u) \\
+ c_1 \int_{\tilde{u}} (\tilde{x}_n, u) \hat{u} + c_1 \Delta f_{\tilde{u}}(\tilde{x}_n, u) - c_1 \dot{x}_{nd}.
$$

(3.36)

We choose the control law as

$$
\dot{u} = -[c_1 \int_{\tilde{x}_0} (\tilde{x}_n, u)]^{-1} \left[c_1 \int_{\tilde{u}} (\tilde{x}_n, u) f_{\tilde{x}_0}(\tilde{x}_n, u) + \ddot{z}_n + \int_{\tilde{x}_0, n} \left(x_{n-1}, x_n \right) s_{n-1} + v_n \right].
$$

(3.37)

Let

$$
v_{NN} = \bar{W}_n S_n \left(\tilde{V}_n^T X_n \right).
$$

(3.38)

Let us consider the following Lyapunov function:

$$
V_n = \sum_{i=1}^{n-1} V_i + \frac{1}{2} s_n^T s_n + \frac{1}{2} \text{tr} \left\{ \bar{W}_n^T \Gamma_{WW}^{-1} \bar{W}_n \right\} + \frac{1}{2} \text{tr} \left\{ \bar{V}_n^T \Gamma_{VV}^{-1} \bar{V}_n \right\},
$$

(3.39)

where $\Gamma_{WW} = \Gamma_{WW}^T > 0$ and $\Gamma_{VV} = \Gamma_{VV}^T > 0$ are constant design parameters.
Choose the adaptive tuning law as

\[\dot{\hat{W}}_n = \Gamma_{W_n} \left[(\hat{S}_n - \hat{S}_n^T \hat{V}_n^T X_n) s_n^T - \sigma_{W_n} \hat{W}_n \right], \]

\[\dot{\hat{V}}_n = \Gamma_{V_n} \left(X_n s_n^T \hat{W}_n^T s_n^T - \sigma_{V_n} \hat{V}_n \right), \] \hspace{1cm} (3.40)

where \(\sigma_{W_n} > 0 \) and \(\sigma_{V_n} > 0 \) are small parameters.
Mathematical Problems in Engineering

Similar to the derivation process in Step 1, we have

\[V_n \leq -\sum_{i=1}^{n} k_i \| s_i \|^2 + \frac{\sigma W_i}{2} \| \tilde{W}_i \|^2_F + \frac{\sigma V_i}{2} \| \tilde{V}_i \|^2_F - b_i \]

\[\leq -k V_n + b, \] \hspace{1cm} (3.41)

where \(b_n = [\eta_n ((1/4)\| W_n \|^2_F + (1/4)\| V_n \|^2_F + (1/4)\| W_n \|^2_F + e_{w_n}^2) + (\sigma W_n/2)\| W_n \|^2_F + (\sigma V_n/2)\| V_n \|^2_F \]

is a bounded constant, \(k = \min_{i=1,\ldots,n} \{ 2k_i, \sigma W_i/\lambda_{\min}(\Gamma_{W_i}^{-1}), \sigma V_i/\lambda_{\max}(\Gamma_{V_i}^{-1}) \}, \) and \(b = \sum_{j=1}^{n} b_j. \)

Integrating (3.41) over \([0,t],\) it can be shown that

\[V_n(t) \leq V_n(0) e^{-kt} + \frac{1}{k} b \leq V_n(0) + \frac{b}{k}, \quad \forall t \geq 0. \] \hspace{1cm} (3.42)

Defining \(\lambda_{\min}(\Gamma_{W_i}^{-1}) = \min_{j=1,2,\ldots,n} \{ \lambda_{\min}(\Gamma_{W_i}^{-1}) \}, \) \(\lambda_{\min}(\Gamma_{V_i}^{-1}) = \min_{j=1,2,\ldots,n} \{ \lambda_{\min}(\Gamma_{V_i}^{-1}) \}, \) and from (3.39), it can be shown that

\[\sum_{j=1}^{n} \| W_j \|^2_F \leq \frac{2V_n(t)}{\lambda_{\min}(\Gamma_{W_i}^{-1})}, \quad \sum_{j=1}^{n} \| V_j \|^2_F \leq \frac{2V_n(t)}{\lambda_{\min}(\Gamma_{V_i}^{-1})}. \] \hspace{1cm} (3.43)

It is clear that

\[V_n(t) \geq \frac{1}{2} \sum_{j=1}^{n} \| s_j \|^2. \] \hspace{1cm} (3.44)

It can be seen from (3.41)–(3.44) that all the closed-loop signals are uniformly ultimately bounded. Inequality (3.41) implies that \(V_n(t) \leq (-k/2) \sum_{j=1}^{n} \| s_j \|^2 + b \) holds. Integrating it yields

\[\int_{0}^{t} \| s_j(\tau) \|^2 d\tau \leq \frac{2[V_n(0) + tb]}{k}, \quad j = 1, \ldots, n. \] \hspace{1cm} (3.45)

Summarizing the previous discussion, we have the following results.

Theorem 3.5. Considering the system (2.1), if Assumptions 2.2–3.2 hold, the NN weights are updated according to (3.17), (3.30), (3.40), and the control \(\hat{u} \) is given in (3.37), and then the following results hold.
The sliding surfaces s_j and the estimated parameter errors of NN are bounded and converge to the neighbourhoods of the origins exponentially:

$$\Omega_j = \left\{ s_j, \tilde{W}_j, \tilde{V}_j \left| \sum_{j=1}^{n} \| s_j \|^2 \leq 2[V_n(0) + (b/k)], \sum_{j=1}^{n} \| \tilde{W}_j \|^2 \leq \frac{2[V_n(0) + (b/k)]}{\lambda_{\min}(\Gamma_W^{-1})}, \sum_{j=1}^{n} \| \tilde{V}_j \|^2 \leq \frac{2[V_n(0) + (b/k)]}{\lambda_{\min}(\Gamma_V^{-1})}, \right. \right\},$$

(3.46)
The following inequality holds:

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \| s_j(\tau) \|^2 d\tau \leq \frac{2b}{k}. \quad (3.47)$$

Remark 3.6. It is obvious that the bounded s_j, $j = 1, \ldots, n$, implies the bounded z_j and x_j. Furthermore, if $s_j \to 0$ as $t \to \infty$, we also can conclude that $z_j \to 0$ and $x_j \to x_{jd}$ as $t \to \infty$.

Remark 3.7. The result (1) of Theorem 3.5 indicates that adjusting the values of k_i, Γ_{W_i}, Γ_{V_i}, σ_{W_i}, and σ_{V_i} can control the convergence rate and the size of the convergence region. It is shown from the expression (3.46) that larger gains k_i, Γ_{W_i}, Γ_{V_i}, σ_{W_i}, and σ_{V_i} may result
in smaller convergence region. However, in practice, we do not suggest the use of high adaptation gains because such a choice may cause large oscillations in the control outputs [36].

4. Simulation Study

In order to check the effectiveness of the algorithm, consider the following system:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2), \\
\dot{x}_2 &= f_2(\bar{x}_2, u), \\
y &= x_1,
\end{align*}
\] (4.1)

where \(x_1 = [x_{11} \ x_{12}]^T\), \(x_2 = [x_{21} \ x_{22}]^T\),

\[
\begin{align*}
f_1(x_1, x_2) &= [x_{12} + x_{22} \ x_{11}x_{12}^2 - x_{11}x_{12} + (2 + 0.3 \sin x_{12})x_{21} + \cos(0.1x_{21})]^T, \\
f_2(\bar{x}_2, u) &= [x_{22} + 0.8 \cos(u_1) - x_{21} + x_{22} + u_2 + (x_{21}^2 + x_{22}^2)(1 - e^{-u_2}) - x_{21}x_{22}]^T.
\end{align*}
\] (4.2)

Let the desired output of the system be \(y_d = [x_{11d} \ x_{12d}]^T = [5 \ 0]^T\), and let the initial conditions be \([x_{11}(0) \ x_{12}(0) \ x_{21}(0) \ x_{22}(0)] = [0.5 \ 0.25 \ 0.01 \ 0]\), \(W_1(0) = W_2(0) = [0]_{11 \times 2}\), and \(V_1(0) = V_2(0) = [0]_{5 \times 11}\).

According to Remark 3.7, we choose the parameters of the controller as follows: \(k_{111} = 6.6, k_{122} = 6.6, k_{211} = 12.4, k_{222} = 12.4, \Gamma_{W_1} = 0.01, \Gamma_{W_2} = 0.28, \sigma_{W_1} = \sigma_{W_2} = 0.05, \Gamma_{V_1} = 0.11, \Gamma_{V_2} = 0.07, \sigma_{V_1} = \sigma_{V_2} = 0.052, \eta_1 = \eta_2 = 0.001, \) and \(c_1 = 0.69\).

The following two cases will be considered.

Case 1. All the parameters in (4.1) are known.

Case 2. One has the system with uncertainties \(f_{10}(x_1, x_2) = 0.8f_1(x_1, x_2), \Delta f_{10}(x_1, x_2) = 0.2f_1(x_1, x_2), f_{20}(\bar{x}_2, u) = 0.8f_2(\bar{x}_2, u), \) and \(\Delta f_{20}(\bar{x}_2, u) = 0.2f_2(\bar{x}_2, u)\).

The simulation results are shown in Figures 1–8. Figures 1–4 show the state responses in case of the system without uncertainties (Case 1), where Figure 1 shows the tracking response curve of the state \(x_{11}\), Figure 2 shows the response curve of the state \(x_{12}\), Figure 3 shows the response curve of the state \(x_{21}\), and Figure 4 shows the response curve of the state \(x_{22}\). Figures 5–8 show the state responses in case of the system with uncertainties (Case 2), where Figure 5 shows the tracking response curve of the state \(x_{11}\), Figure 6 shows the response curve of the state \(x_{12}\), Figure 7 shows the response curve of the state \(x_{21}\), and Figure 8 shows the response curve of the state \(x_{22}\). The control signals are shown in Figures 9 and 10.

Although no exact model of the plant is available and the initial NN weights are set to zero, through the NN learning phase and the action of the robust term, it can be seen that the output tracking performance shown in Figure 5 is quite well and the output tracking error converges to a quite small set after 4 s in Case 2.

From the figures, one can conclude that the proposed control method presents a good quality control in both cases.
5. Conclusions

In this paper, an NN-based sliding mode-like controller is presented for a class of uncertain block nonaffine systems. The controller is designed using NN control, dynamic feedback, backstepping design, sliding mode-like technique, and feedback linearization techniques, which makes the stability analysis simple for block nonaffine systems and guarantees the stability of the closed-loop system. The sliding mode-like technique can be applied to other classes of nonlinear systems in strict feedback form. The simulation results show the effectiveness of the proposed scheme.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant no. 60674090.

References

Submit your manuscripts at http://www.hindawi.com