Research Article

Hypothesis Testing in Generalized Linear Models with Functional Coefficient Autoregressive Processes

Lei Song,¹ Hongchang Hu,¹ and Xiaosheng Cheng²

¹ School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
² Department of Mathematics, Huizhou University, Huizhou 516007, China

Correspondence should be addressed to Hongchang Hu, retutome@163.com

Received 28 January 2012; Accepted 25 March 2012

Academic Editor: Ming Li

Copyright © 2012 Lei Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper studies the hypothesis testing in generalized linear models with functional coefficient autoregressive (FCA) processes. The quasi-maximum likelihood (QML) estimators are given, which extend those estimators of Hu (2010) and Maller (2003). Asymptotic chi-squares distributions of pseudo likelihood ratio (LR) statistics are investigated.

1. Introduction

Consider the following generalized linear model:

\[y_t = g\left(x_t^T \hat{\beta}\right) + \varepsilon_t, \quad t = 1, 2, \ldots, n, \quad (1.1) \]

where \(\beta \) is \(d \)-dimensional unknown parameter, \(\{\varepsilon_t, t = 1, 2, \ldots, n\} \) are functional coefficient autoregressive processes given by

\[\varepsilon_1 = \eta_1, \quad \varepsilon_t = f_t(\theta)\varepsilon_{t-1} + \eta_t, \quad t = 2, 3, \ldots, n, \quad (1.2) \]

where \(\{\eta_t, t = 1, 2, \ldots, n\} \) are independent and identically distributed random variable errors with zero mean and finite variance \(\sigma^2 \), \(\theta \) is a one-dimensional unknown parameter, and \(f_t(\theta) \) is a real valued function defined on a compact set \(\Theta \) which contains the true value \(\theta_0 \) as
an inner point and is a subset of \mathbb{R}^3. The values of θ_0 and σ^2 are unknown. $g(\cdot)$ is a known continuous differentiable function.

Model (1.1) includes many special cases, such as an ordinary regression model (when $f_t(\theta) \equiv 0$, $g(\tau) = \tau$; see [1–7]), an ordinary generalized regression model (when $f_t(\theta) \equiv 0$; see [8–13]), a linear regression model with constant coefficient autoregressive processes (when $f_t(\theta) = \theta$, $g(\tau) = \tau$; see [14–16]), time-dependent and function coefficient autoregressive processes (when $g(\tau) = 0$; see [17]), constant coefficient autoregressive processes (when $f_t(\theta) = \theta$, $g(\tau) = 0$; see [18–20]), time-dependent or time-varying autoregressive processes (when $f_t(\theta) = a_t$, $g(\tau) = 0$; see [21–23]), and a linear regression model with functional coefficient autoregressive processes (when $g(\tau) = \tau$; see [24]). Many authors have discussed some special cases of models (1.1) and (1.2) (see [1–24]). However, few people investigate the model (1.1) with (1.2). This paper studies the model (1.1) with (1.2). The organization of this paper is as follows. In Section 2, some estimators are given by the quasi-maximum likelihood method. In Section 3, the main results are investigated. The proofs of the main results are presented in Section 4, with the conclusions and some open problems in Section 5.

2. The Quasi-Maximum Likelihood Estimate

Write the “true” model as

$$y_t = g(x_t' \beta_0) + e_t, \quad t = 1, 2, \ldots, n,$$

(2.1)

$$e_1 = \eta_1, \quad e_t = f_t(\theta_0) e_{t-1} + \eta_t, \quad t = 2, 3, \ldots, n,$$

(2.2)

where $g' (\tau) = (dg(\tau)/d\tau) \neq 0$, $f'_t(\theta) = (df_t(\theta)/d\theta) \neq 0$. Define $\prod_{i=0}^{t-1} f_{t-i}(\theta_0) = 1$, and by (2.2), we have

$$e_t = \sum_{j=0}^{t-1} \left(\prod_{i=0}^{j-1} f_{t-i}(\theta_0) \right) \eta_{t-j}.$$

(2.3)

Thus e_t is measurable with respect to the σ–field \mathcal{H} generated by $\eta_1, \eta_2, \ldots, \eta_t$, and

$$Ee_t = 0, \quad \text{Var}(e_t) = \sigma^2_0 \sum_{j=0}^{t-1} \left(\prod_{i=0}^{j-1} f_{t-i}^2(\theta_0) \right).$$

(2.4)

Assume at first that the η_t are i.i.d. $N(0, \sigma^2)$, we get the log-likelihood of y_2, \ldots, y_n conditional on y_1 given by

$$\Phi_n = \ln L_n = -\frac{(n - 1) \ln \sigma^2}{2} - \sum_{t=2}^{n} \left(e_t - f_t(\theta_0) e_{t-1} \right)^2 \frac{2}{2\sigma^2} - \frac{(n - 1) \ln 2\pi}{2}.$$

(2.5)
At this stage we drop the normality assumption, but still maximize (2.5) to obtain QML estimators, denoted by $\hat{\sigma}_n^2, \hat{\beta}_n, \hat{\theta}_n$. The estimating equations for unknown parameters in (2.5) may be written as

$$
\frac{\partial \Phi_n}{\partial \sigma^2} = -\frac{n-1}{2\sigma^2} + \frac{1}{2\sigma^2} \sum_{t=2}^{n} (\varepsilon_t - f_i(\theta)\varepsilon_{t-1})^2,
$$

$$
\frac{\partial \Phi_n}{\partial \theta} = \frac{1}{\sigma^2} \sum_{t=2}^{n} f'_i(\theta)(\varepsilon_t - f_i(\theta)\varepsilon_{t-1})\varepsilon_{t-1},
$$

$$
\frac{\partial \Phi_n}{\partial \beta_{d+1}} = \frac{1}{\sigma^2} \sum_{t=2}^{n} (\varepsilon_t - f_i(\theta)\varepsilon_{t-1}) \cdot \left(g' \left(x_i^T \hat{\beta} \right) x_i - f_i(\theta)g' \left(x_{i-1}^T \hat{\beta} \right) x_{i-1} \right).
$$

Thus, $\hat{\sigma}_n^2, \hat{\beta}_n, \hat{\theta}_n$ satisfy the following estimation equations

$$
\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{t=2}^{n} (\tilde{\varepsilon}_t - f_i(\hat{\theta}_n)\tilde{\varepsilon}_{t-1})^2,
$$

$$
\sum_{t=2}^{n} \left(\tilde{\varepsilon}_t - f_i(\hat{\theta}_n)\tilde{\varepsilon}_{t-1} \right) f'_i(\hat{\theta}_n)\tilde{\varepsilon}_{t-1} = 0,
$$

$$
\sum_{t=2}^{n} \left(\tilde{\varepsilon}_t - f_i(\hat{\theta}_n)\tilde{\varepsilon}_{t-1} \right) \left(g' \left(x_i^T \hat{\beta} \right) x_i - f_i(\hat{\theta}_n)g' \left(x_{i-1}^T \hat{\beta} \right) x_{i-1} \right) = 0,
$$

where

$$
\tilde{\varepsilon}_t = y_t - g \left(x_i^T \hat{\beta} \right).
$$

Remark 2.1. If $g(x_i^T \beta) = x_i^T \beta$, then the above equations become the same as Hu’s (see [24]). If $f_i(\theta) = \theta, g(x_i^T \beta) = x_i^T \beta$, then the above equations become the same as Maller’s (see [15]). Thus we extend those QML estimators of Hu [24] and Maller [15].

For ease of exposition, we will introduce the following notations, which will be used later in the paper. Let $(d+1) \times 1$ vector $\varphi = (\beta^T, \theta)^T$. Define

$$
S_n(\varphi) = \sigma^2 \frac{\partial \Phi_n}{\partial \varphi} = \sigma^2 \left(\frac{\partial \Phi_n}{\partial \beta} \cdot \frac{\partial \Phi_n}{\partial \theta} \right),
$$

$$
F_n(\varphi) = -\sigma^2 \frac{\partial^2 \Phi_n}{\partial \varphi \partial \varphi^T}.
$$

By (2.7), we have

$$
F_n(\varphi) = \begin{pmatrix} X_n(\varphi, \omega) & U \\ \ast & \sum_{t=2}^{n} \left(f''_i(\theta) + f_i(\theta) f''_i(\theta) \right) \varepsilon_{t-1}^2 - f''_i(\theta) \varepsilon_t \varepsilon_{t-1} \end{pmatrix},
$$

where

$$
X_n(\varphi, \omega) = \begin{pmatrix} \dot{X}_n(\varphi, \omega) \\ \ast \end{pmatrix},
$$

$$
\dot{X}_n(\varphi, \omega) = \begin{pmatrix} X_n(\varphi, \omega) \\ \ast \end{pmatrix} + \sum_{t=2}^{n} \left(f''_i(\theta) + f_i(\theta) f''_i(\theta) \right) \varepsilon_{t-1} \varepsilon_{t-1}.
$$
where the * indicates that the elements are filled in by symmetry,

\[X_n(\varphi, \omega) = -\sigma^2 \left(\frac{\partial^2 \Phi_n}{\partial \beta \partial \beta^T} \right), \]

\[U = \sum_{t=2}^{n} \left(f'_t(\theta) \epsilon_{t-1} g' \left(x^T_t \beta \right) x_t + f'_t(\theta) \epsilon_{t-1} g' \left(x^T_{t-1} \beta \right) x_{t-1} - 2f_t(\theta) f'_t(\theta) \epsilon_{t-1} g' \left(x^T_{t-1} \beta \right) x_{t-1} \right), \]

\[\frac{\partial^2 \Phi_n}{\partial \beta \partial \beta^T} = -\frac{1}{\sigma^2} \sum_{t=2}^{n} \left(g' \left(x^T_t \beta \right) x_t - f_t(\theta) g' \left(x^T_{t-1} \beta \right) x_{t-1} \right) \left(g' \left(x^T_{t-1} \beta \right) x_{t-1} - f_t(\theta) g' \left(x^T_{t-1} \beta \right) x_{t-1} \right)^T \]

\[+ \frac{1}{\sigma^2} \sum_{t=2}^{n} (\epsilon_t - f_t(\theta) \epsilon_{t-1}) \left(\left(x^T_t \beta \right) x_t x^T_t - f_t(\theta) g'' \left(x^T_{t-1} \beta \right) x_{t-1} x^T_{t-1} \right). \]

\[(2.14)\]

Because \{\epsilon_{t-1}\} and \{\eta_t\} are mutually independent, we have

\[D_n = E(F_n(\varphi_0)) = \begin{pmatrix} X_n(\varphi_0) & 0 \\ 0 & \sum_{t=2}^{n} f^2_t(\theta_0) E\epsilon_{t-1}^2 \end{pmatrix} = \begin{pmatrix} X_n(\varphi_0) & 0 \\ 0 & \Delta(\theta_0, \sigma_0) \end{pmatrix}, \]

\[(2.15)\]

where

\[X_n(\varphi_0) = \sum_{t=2}^{n} \left(g' \left(x^T_t \beta_0 \right) x_t - f_t(\theta_0) g' \left(x^T_{t-1} \beta_0 \right) x_{t-1} \right) \left(\left(x^T_t \beta_0 \right) x_t - f_t(\theta_0) g' \left(x^T_{t-1} \beta_0 \right) x_{t-1} \right)^T, \]

\[\Delta(\theta_0, \sigma_0) = \sum_{t=2}^{n} f^2_t(\theta_0) E\epsilon_{t-1}^2 = \sigma_0^2 \sum_{t=2}^{n} f^2_t(\theta_0) \sum_{j=0}^{t-2} \left(\prod_{i=0}^{t-1} f^2_{i-1}(\theta) \right) = O(n). \]

\[(2.16)\]

By (2.8), (2.7) and \(E\eta_t = 0 \), we have

\[\sigma_0^2 \sum_{t=2}^{n} \left(\frac{\partial \Phi_n}{\partial \beta} \bigg|_{\beta = \beta_0} \right) = \sum_{t=2}^{n} \epsilon_t \left(g' \left(x^T_t \beta_0 \right) x_t - f_t(\theta_0) g' \left(x^T_{t-1} \beta_0 \right) x_{t-1} \right) = 0, \]

\[\sigma_0^2 \sum_{t=2}^{n} \left(\frac{\partial \Phi_n}{\partial \theta} \bigg|_{\theta = \theta_0} \right) = \sum_{t=2}^{n} f'_t(\theta_0) E(\eta_t \epsilon_{t-1}) = 0. \]

\[(2.17)\]

3. Statement of Main Results

In the section pseudo likelihood ratio (LR) statistics for various hypothesis tests of interest are derived. We consider the following hypothesis:

\[H_1 : g(\cdot), f(\cdot) \text{ are continuous functions, and } f^{(i)} \neq 0, \sigma_0^2 > 0. \]

\[(3.1)\]
When the parameter space is restricted by a hypothesis \(H_{0j}, j = 1, 2, \ldots \), let \(\hat{\beta}_j, \hat{\theta}_j, \hat{\sigma}_j^2 \) be the corresponding QML estimators of \(\beta, \theta, \sigma^2 \), and let

\[
\tilde{L}_{jn} = -2 \Phi_n \left(\hat{\beta}_j, \hat{\theta}_j, \hat{\sigma}_j^2 \right)
\]

be minus twice the log-likelihood, evaluated at the fitted parameters. Also let

\[
\tilde{L}_n = -2 \Phi_n \left(\hat{\beta}_n, \hat{\theta}_n, \hat{\sigma}_n^2 \right),
\]

\[
d_{jn} = \tilde{L}_{jn} - \tilde{L}_n
\]

be the “deviance” statistic for testing \(H_{0j} \) against \(H_1 \). From (2.5) and (2.8),

\[
\tilde{L}_n = (n - 1) \ln \hat{\sigma}_n^2 + (n - 1)(1 + \ln 2\pi)
\]

and similarly

\[
\tilde{L}_{jn} = (n - 1) \ln \hat{\sigma}_{jn}^2 + (n - 1)(1 + \ln 2\pi).
\]

In order to obtain our results, we give some sufficient conditions as follows.

(A1) \(X_n = \sum_{i=2}^{n} x_i x_i^T \) is positive definite for sufficiently large \(n \) and

\[
\lim_{n \to \infty} \max_{1 \leq j \leq l_1} x_i^T X_n^{-1} x_i = O(n^{-\alpha}), \quad \forall \alpha \in \left[\frac{1}{2}, 1 \right], \quad \lim_{n \to \infty} \sup \| \lambda \|_{\max} \left(X_n^{-1/2} Z_n X_n^{-1/2} \right) < 1,
\]

where \(Z_n = (1/2) \sum_{i=2}^{n} (x_i x_{i-1}^T + x_{i-1} x_i^T) \) and \(\| \lambda \|_{\max} (\cdot) \) denotes the maximum in absolute value of the eigenvalues of a symmetric matrix.

(A2) There is a constant \(\alpha > 0 \) such that

\[
\sum_{j=1}^{l} \left(\prod_{i=0}^{j-1} f_i^{(\alpha)}(\theta) \right) \leq \alpha, \quad \max_{1 \leq j \leq n} \left| \sum_{i=0}^{n} \left(\prod_{i=0}^{l-1} f_i^{(\alpha)}(\theta_0) \right) \right| \leq \gamma.
\]

(A3) \(f_i'(\theta) = df_i(\theta)/d\theta \neq 0 \) and \(f_i''(\theta) = df_i'(\theta)/d\theta \) exist and are bounded, and \(g(\cdot) \) is twice continuously differentiable, \(0 < m \leq \max_{u} |g'(u)| \leq M < \infty, \quad 0 < \bar{m} \leq \max_{u} |g''(u)| \leq \bar{M} < \infty. \)

Theorem 3.1. Assume (2.1), (2.2) and (A1)–(A3).

1. Suppose \(H_{01} : f_1(\theta) = \theta \) and \(g(\cdot) \) is a continuous function, \(\sigma_0^2 > 0 \) holds. Then

\[
d_{1n} \xrightarrow{D} \chi^2_1, \quad n \to \infty.
\]
(2) Suppose \(H_{02} : f_1(\theta) = \theta, g(u) = u, \sigma_0^2 > 0 \) holds. Then
\[
\mathbb{d}_{2n} \xrightarrow{D} \chi^2_1, \quad n \to \infty.
\]
(3.9)

(3) Suppose \(H_{03} : f_1(\theta) = \theta, g(u) = e^u/(1 + e^u), \sigma_0^2 > 0 \) holds. Then
\[
\mathbb{d}_{3n} \xrightarrow{D} \chi^2_1, \quad n \to \infty.
\]
(3.10)

4. Proof of Theorem

To prove Theorem 3.1, we first introduce the following lemmas.

Lemma 4.1. Suppose that (A1)–(A3) hold. Then, for all \(A > 0 \),
\[
\sup_{\varphi \in N_n(A)} \left\| D_{2n}^{-1/2} F_n(\varphi) D_{2n}^{-T/2} - \Phi_n \right\| \xrightarrow{p} 0, \quad n \to \infty,
\]
(4.1)

where
\[
\Phi_n = \text{diag} \left(I_d, \frac{\sum_{i=2}^{n-1} f_1^2(\hat{c}_{i-1}) e_i^2}{\Delta_n(\hat{c}_{i-1}, \sigma_0)} \right),
\]
(4.2)

\[
N_n(A) = \left\{ \varphi \in \mathbb{R}^{d+1} : (\varphi - \varphi_0)^T D_n(\varphi - \varphi_0) \leq A^2 \right\}.
\]
(4.3)

Proof. Similar to proof of Lemma 4.1 in Hu [24], here we omit. \(\square \)

Lemma 4.2. Suppose that (A1)–(A3) hold. Then \(\tilde{\varphi}_n \to \varphi_0, \tilde{\sigma}_n^2 \to \sigma_0^2 \) and
\[
X_n(\beta^*, \beta^{**}, \hat{\beta}_n) \to X_n(\varphi_0),
\]
(4.4)

where \(\beta^*, \beta^{**} \) are on the line of \(\beta_0 \) and \(\tilde{\beta}_n \).

Proof. Similar to proof of Theorem 3.1 in Hu [24], we easily prove that \(\tilde{\varphi}_n \to \varphi_0 \), and \(\tilde{\sigma}_n^2 \to \sigma_0^2 \). Since (4.4) is easily proved, here we omit the proof (4.4). \(\square \)

Proof of Theorem 3.1. Note that \(S_n(\tilde{\varphi}_n) = 0 \) and \(F_n(\tilde{\varphi}_n) \) are nonsingular. By Taylor’s expansion, we have
\[
0 = S_n(\tilde{\varphi}_n) = S_n(\varphi_0) - F_n(\tilde{\varphi}_n)(\tilde{\varphi}_n - \varphi_0),
\]
(4.5)
where $\tilde{\phi}_n = a\tilde{\phi}_n + (1 - a)\phi_0$ for some $0 \leq a \leq 1$. Since $\tilde{\phi}_n \in N_n(A)$, also $\tilde{\phi}_n \in N_n(A)$. By (4.1), we have

$$F_n(\tilde{\phi}_n) = D_n^{1/2}(\Phi_n + \tilde{A}_n)D_n^{1/2}. \quad (4.6)$$

Thus \tilde{A}_n is a symmetric matrix with $\tilde{A}_n \xrightarrow{P} 0$. By (4.5) and (4.6), we have

$$D_n^{1/2}(\tilde{\phi}_n - \phi_0) = D_n^{1/2}F_n^{-1}(\tilde{\phi}_n)S_n(\phi_0) = (\Phi_n + \tilde{A}_n)^{-1}D_n^{-1/2}S_n(\phi_0). \quad (4.7)$$

Let $S_n(\phi), F_n(\phi)$ denote $S_n^{(\beta)}(\phi), S_n^{(\theta)}(\phi)$, and $F_n^{(\beta)}(\phi), F_n^{(\theta)}(\phi)$, respectively. By (4.7), we have

$$\Phi_nD_n^{1/2}(\tilde{\beta}_n - \beta_0, \tilde{\theta}_n - \theta_0) = D_n^{-1/2}\left(S_n^{(\beta)}(\phi_0), S_n^{(\theta)}(\phi_0)\right) + o_P(1). \quad (4.8)$$

Note that

$$\Phi_nD_n^{1/2} = \begin{pmatrix} X_n^{1/2}(\phi_0) & 0 \\ 0 & \frac{(\sum_{t=2}^{n} f_i^2(\theta_0) e_i^2) - \Delta_n(\theta_0, \sigma_0)}{\sqrt{\Delta_n(\theta_0, \sigma_0)}} \end{pmatrix},$$

$$D_n^{-1/2} = \begin{pmatrix} X_n^{-1/2}(\phi_0) & 0 \\ 0 & 1 \end{pmatrix}.$$

By (2.15), (4.2) and (4.8), we get

$$X_n^{1/2}(\phi_0)(\tilde{\beta}_n - \beta_0) = X_n^{-1/2}(\phi_0)S_n^{(\beta)}(\phi_0) + o_P(1)$$

$$= X_n^{-1/2}(\phi_0)\sum_{t=2}^{n} \eta_t \left(g'(x_t^T\beta_0)x_t - f_i(\theta_0)g'(x_{t-1}^T\beta_0)x_{t-1}\right) + o_P(1), \quad (4.10)$$

$$\sum_{t=2}^{n} f_i^2(\theta_0) e_i^2(\tilde{\theta}_n - \theta_0) = S_n^{(\theta)}(\phi_0) + o_P\left(\sqrt{\Delta_n(\theta_0, \sigma_0)}\right)$$

$$= \sum_{t=2}^{n} f_i(\theta_0)\eta_t e_{t-1} + o_P\left(\sqrt{\Delta_n(\theta_0, \sigma_0)}\right). \quad (4.11)$$

Note that

$$e_t = y_t - g(x_t^T\hat{\beta}) = g'(x_t^T\hat{\beta})x_t(\beta_0 - \beta) + e_t \quad (4.12)$$
By (2.1), (2.11) and (4.12), we have
\[
\tilde{e}_t - f_i(\tilde{\theta}_n) \tilde{e}_{t-1} = (g'\left(x_t^T \beta^*\right)x_t^T - f_i(\tilde{\theta}_n)g'\left(x_{t-1}^T \beta^{**}\right)x_{t-1}^T)\left(\beta_0 - \tilde{\beta}_n\right) + \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right).
\]
(4.13)

By (4.13) and (2.10), we have
\[
\sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right)^2 = \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right) \left(g'\left(x_t^T \beta^*\right)x_t^T - f_i(\tilde{\theta}_n)g'\left(x_{t-1}^T \beta^{**}\right)x_{t-1}^T\right) \left(\beta_0 - \tilde{\beta}_n\right)
\]
\[
+ \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right) \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right)
\]
\[
= \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right) \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right).
\]
(4.14)

By (4.13), we have
\[
\left(g'\left(x_t^T \beta^*\right)x_t^T - f_i(\tilde{\theta}_n)g'\left(x_{t-1}^T \beta^{**}\right)x_{t-1}^T\right)\left(\beta_0 - \tilde{\beta}_n\right) = \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right) - \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right).
\]
(4.15)

By (4.15), we have
\[
\sum_{t=2}^{n} \left(g'\left(x_t^T \beta^*\right)x_t^T - f_i(\tilde{\theta}_n)g'\left(x_{t-1}^T \beta^{**}\right)x_{t-1}^T\right)\left(\beta_0 - \tilde{\beta}_n\right)
\]
\[
= \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right)^2 + \sum_{t=2}^{n} \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right)^2
\]
\[
- 2 \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)\tilde{e}_{t-1}\right) \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right)
\]
\[
= \sum_{t=2}^{n} \left(e_t - f_i(\tilde{\theta}_n)e_{t-1}\right)^2 - \sum_{t=2}^{n} \left(\tilde{e}_t - f_i(\tilde{\theta}_n)e_{t-1}\right)^2.
\]
(4.16)
By (4.14) and (4.16), we have

\[
\sum_{t=2}^{n} \left(\bar{e}_t - f_i(\hat{\theta}_t) \bar{e}_{t-1} \right)^2 = \sum_{t=2}^{n} \left(e_t - f_i(\hat{\theta}_t) e_{t-1} \right)^2 \\
- \sum_{t=2}^{n} \left(\left(g' \left(x_i^T \beta^* \right) x_i^T - f_i(\hat{\theta}_t) g' \left(x_{t-1}^T \beta^{**} \right) x_{t-1}^T \right) \left(\beta_0 - \hat{\beta}_n \right) \right)^2
\]

(4.17)

By (4.15), we have

\[
\sum_{t=2}^{n} \left(\bar{e}_t - f_i(\hat{\theta}_t) \bar{e}_{t-1} \right)^2 = \sum_{t=2}^{n} \left(e_t - f_i(\hat{\theta}_t) e_{t-1} \right)^2 + \sum_{t=2}^{n} \left(\left(g' \left(x_i^T \beta^* \right) x_i^T - f_i(\hat{\theta}_t) g' \left(x_{t-1}^T \beta^{**} \right) x_{t-1}^T \right) \left(\beta_0 - \hat{\beta}_n \right) \right)^2 \\
+ 2 \sum_{t=2}^{n} \left(e_t - f_i(\hat{\theta}_t) e_{t-1} \right) \left(\left(g' \left(x_i^T \beta^* \right) x_i^T - f_i(\hat{\theta}_t) g' \left(x_{t-1}^T \beta^{**} \right) x_{t-1}^T \right) \left(\beta_0 - \hat{\beta}_n \right) \right)
\]

(4.18)

Thus, by (4.17) and (4.18), we have

\[
\sum_{t=2}^{n} \left(\left(g' \left(x_i^T \beta^* \right) x_i^T - f_i(\hat{\theta}_t) g' \left(x_{t-1}^T \beta^{**} \right) x_{t-1}^T \right) \left(\beta_0 - \hat{\beta}_n \right) \right)^2 \\
+ \sum_{t=2}^{n} \left(e_t - f_i(\hat{\theta}_t) e_{t-1} \right) \left(\left(g' \left(x_i^T \beta^* \right) x_i^T - f_i(\hat{\theta}_t) g' \left(x_{t-1}^T \beta^{**} \right) x_{t-1}^T \right) \left(\beta_0 - \hat{\beta}_n \right) \right) = 0
\]

(4.19)

Since \(\eta_t = e_t - f_i(\theta_0) e_{t-1} \), we have

\[
\sum_{t=2}^{n} \left(e_t - f_i(\hat{\theta}_t) e_{t-1} \right)^2 = \sum_{t=2}^{n} \left(\eta_t + f_i(\theta_0) e_{t-1} - f_i(\hat{\theta}_t) e_{t-1} \right)^2 \\
= \sum_{t=1}^{n} \eta_t^2 + \sum_{t=2}^{n} \left(f_i(\theta_0) - f_i(\hat{\theta}_t) \right)^2 e_{t-1}^2 + 2 \left(f_i(\theta_0) - f_i(\hat{\theta}_t) \right) \eta_t e_{t-1}
\]

(4.20)

Thus, by (4.17), (4.20) and mean value theorem, we have

\[
(n-1)\bar{\sigma}_n^2 = \sum_{t=2}^{n} \left(\bar{e}_t - f_i(\hat{\theta}_t) \bar{e}_{t-1} \right)^2 \\
= \sum_{t=1}^{n} \eta_t^2 + \sum_{t=2}^{n} \left(f_i(\theta_0) - f_i(\hat{\theta}_t) \right)^2 e_{t-1}^2 + 2 \left(f_i(\theta_0) - f_i(\hat{\theta}_t) \right) \eta_t e_{t-1}
\]
where $\tilde{\theta} = a\theta_0 + (1 - a)\hat{\theta}_n$ for some $0 \leq a \leq 1$.

It is easy to know that

$$
(\hat{\beta}_n - \beta_0)^T X_n(\varphi_0)(\hat{\beta}_n - \beta_0)
$$

$$
= \left(\sum_{t=2}^{n} \eta_t X_n^{-1/2}(\varphi_0) \left(g' \left(x_t^T \beta_0 \right) x_t - f_i(\theta_0) g' \left(x_{t-1}^T \beta_0 \right) x_{t-1} \right) \right)^2 + o_p(1).
$$

(4.22)

By Lemma 4.2 and (4.22), we have

$$
(n - 1)\hat{\sigma}_n^2 = \sum_{t=1}^{n} \eta_t^2 + \left(\theta_0 - \hat{\theta}_n \right)^2 \sum_{t=2}^{n} f_i^2(\tilde{\theta}) e_{t-1}^2 + 2 \left(\theta_0 - \hat{\theta}_n \right) \sum_{t=2}^{n} f_i(\tilde{\theta}) e_{t-1} \eta_t
$$

$$
- \left(\sum_{t=2}^{n} \eta_t X_n^{-1/2}(\varphi_0) \left(g' \left(x_t^T \beta_0 \right) x_t - f_i(\theta_0) g' \left(x_{t-1}^T \beta_0 \right) x_{t-1} \right) \right)^2 + o_p(1)
$$

$$
= \sum_{t=1}^{n} \eta_t^2 + \left(\theta_0 - \hat{\theta}_n \right)^2 \sum_{t=2}^{n} f_i^2(\tilde{\theta}) e_{t-1}^2 + 2 \left(\theta_0 - \hat{\theta}_n \right) \sum_{t=2}^{n} f_i(\tilde{\theta}) e_{t-1} \eta_t
$$

$$
- \left(\sum_{t=2}^{n} \eta_t X_n^{-1/2}(\varphi_0) \left(g' \left(x_t^T \beta_0 \right) x_t - f_i(\theta_0) g' \left(x_{t-1}^T \beta_0 \right) x_{t-1} \right) \right)^2 + o_p(1).
$$

(4.23)

Hence, by (4.11), we have

$$
\hat{\theta}_n - \theta_0 = \frac{\sum_{t=2}^{n} f_i(\theta_0) \eta_t e_{t-1}}{\sum_{t=2}^{n} f_i^2(\theta_0) e_{t-1}^2} + o_p \left(\frac{\sqrt{\Delta_n(\theta_0, \varphi_0)}}{\sum_{t=2}^{n} f_i^2(\theta_0) e_{t-1}^2} \right)
$$

$$
= \frac{\sum_{t=2}^{n} f_i(\theta_0) \eta_t e_{t-1}}{\sum_{t=2}^{n} f_i^2(\theta_0) e_{t-1}^2} + o_p \left(\frac{1}{\sqrt{\sum_{t=2}^{n} f_i^2(\theta_0) e_{t-1}^2}} \right).
$$

(4.24)
By (4.24), we have

\[
(\theta_0 - \hat{\theta}_n)^2 \sum_{i=2}^{n} f_i^2(\hat{\theta})e_i^2 + 2(\theta_0 - \hat{\theta}_n) \sum_{i=2}^{n} f_i(\hat{\theta})e_{i-1}\eta_i \\
= \left(\frac{\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1}}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p\left(\frac{1}{\sqrt{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2}} \right) \right)^2 \sum_{i=2}^{n} f_i^2(\hat{\theta})e_i^2 \\
+ 2 \left(\frac{\sum_{i=2}^{n} f_i(\theta_0)\eta_1 e_{i-1}}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p\left(\frac{1}{\sqrt{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2}} \right) \right) \sum_{i=2}^{n} f_i(\hat{\theta})e_{i-1}\eta_i + \mathcal{O}_p(1) \\
= \left(\frac{\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1}}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p\left(\frac{1}{\sqrt{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2}} \right) \right)^2 \sum_{i=2}^{n} f_i(\theta_0) + \mathcal{O}(1)^2 e_i^2 \\
+ 2 \left(\frac{\sum_{i=2}^{n} f_i(\theta_0)\eta_1 e_{i-1}}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p\left(\frac{1}{\sqrt{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2}} \right) \right) \sum_{i=2}^{n} f_i(\theta_0) + \mathcal{O}(1) \\
\cdot \sum_{i=2}^{n} (f_i^2(\theta_0) + \mathcal{O}(1))e_{i-1}\eta_i + \mathcal{O}_p(1) \\
= \frac{\left(\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1} \right)^2}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} \frac{2\left(\sum_{i=2}^{n} f_i(\theta_0)\eta_1 e_{i-1} \right)^2}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p(1) \\
= -\frac{\left(\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1} \right)^2}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} + \mathcal{O}_p(1).
\]

By Lemma 4.2, we have

\[
(n - 1)\bar{\sigma}_n^2 = \sum_{i=1}^{n} \eta_i^2 - \frac{\left(\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1} \right)^2}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} \\
- \left(\sum_{i=2}^{n} \eta_i X_n^{-1/2} \left(\hat{\beta}_0^*, \hat{\beta}_0^* \right) \left(g^\prime \left(x_i^T \beta_0 \right) x_i - f_i(\theta_0) g^\prime \left(x_i^T \beta_0 \right) x_{i-1} \right) \right)^2 + \mathcal{O}_p(1) \\
= \sum_{i=1}^{n} \eta_i^2 - \frac{\left(\sum_{i=2}^{n} f_i^2(\theta_0)\eta_1 e_{i-1} \right)^2}{\sum_{i=2}^{n} f_i^2(\theta_0)e_i^2} \\
- \left(\sum_{i=2}^{n} \eta_i X_n^{-1/2} \left(\phi_0 \right) \left(g^\prime \left(x_i^T \beta_0 \right) x_i - f_i(\theta_0) g^\prime \left(x_i^T \beta_0 \right) x_{i-1} \right) \right)^2 + \mathcal{O}_p(1).
\]
Now, we prove (3.8). By (4.12), we have

\[\hat{\varepsilon}_i(1) = y_i - g'\left(x_i^T \hat{\beta}_{1n}\right) = g'\left(x_i^T \hat{\beta}_{1n}\right) x_i^T \left(\beta_0 - \hat{\beta}_{1n}\right) + \varepsilon_i. \]

(4.27)

Note that

\[\varepsilon_i - f_1(\theta_0)\varepsilon_{i-1} = \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i^T - f_1(\theta_0) g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}^T\right)\left(\beta_0 - \hat{\beta}_{1n}\right) + \eta_i. \]

(4.28)

From (4.28), we have

\[\hat{\varepsilon}_i(1) - \hat{\theta}_{1n}\hat{\varepsilon}_{i-1}(1) = \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i^T - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}^T\right)\left(\beta_0 - \hat{\beta}_{1n}\right) + \eta_i. \]

(4.29)

By (2.8) and (2.10), we have

\[0 = \sum_{i=2}^{n} \left(\hat{\varepsilon}_i(1) - \hat{\theta}_{1n}\hat{\varepsilon}_{i-1}(1)\right) \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right) \]

\[= \sum_{i=2}^{n} \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i^T - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}^T\right)\left(\beta_0 - \hat{\beta}_{1n}\right) \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right) \]

\[+ \sum_{i=2}^{n} \eta_i \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right) \]

\[= \left(\beta_0 - \hat{\beta}_{1n}\right)^T X_{1n} \left(\beta_{1n}, \hat{\beta}_{1n}, \hat{\theta}_{1n}\right) + \sum_{i=2}^{n} \eta_i \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right). \]

(4.30)

From (4.30), we obtain that

\[\hat{\beta}_{1n} - \beta_0 = X_{1n}^{-1} \left(\beta_{1n}, \hat{\beta}_{1n}, \hat{\theta}_{1n}\right) \sum_{i=2}^{n} \eta_i \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right). \]

(4.31)

By (4.29), (4.31) and Lemma 4.2, we have

\[(n-1) \hat{\sigma}_{1n}^2 = \sum_{i=2}^{n} \left(\hat{\varepsilon}_i(1) - \hat{\theta}_{1n}\hat{\varepsilon}_{i-1}(1)\right)^2 \]

\[= \sum_{i=1}^{n} \eta_i^2 + \left(\beta_0 - \hat{\beta}_{1n}\right)^T X_{1n} \left(\beta_{1n}, \hat{\beta}_{1n}, \hat{\theta}_{1n}\right) \left(\beta_0 - \hat{\beta}_{1n}\right) \]

\[+ 2 \left(\beta_0 - \hat{\beta}_{1n}\right)^T \sum_{i=2}^{n} \eta_i \left(g'\left(x_i^T \hat{\beta}_{1n}\right) x_i - \hat{\theta}_{1n} g'\left(x_{i-1}^T \hat{\beta}_{1n}\right) x_{i-1}\right). \]
By (3.3)–(3.5), we have

\[d_{1n} = \hat{L}_{1n} - \hat{L}_n = (n - 1) \ln \left(\frac{\sigma^2_{1n}}{\sigma^2_n} \right) = (n - 1) \left(\left(\frac{\sigma^2_{1n}}{\sigma^2_n} \right) - 1 \right) + o_p(1). \]

(4.33)

Under the \(H_{01} \), and by (4.26), (4.32) and (4.33), we have

\[\frac{(n - 1)(\hat{\sigma}^2_{1n} - \hat{\sigma}^2_n)}{\hat{\sigma}^2_n} = \left(\frac{\sum_{t=2}^{n} \eta_t e_{t-1}}{\sum_{t=2}^{n} e_{t-1}^2} \right)^2 + o_p(1) \]

(4.34)

\[= \left(\frac{\frac{\sum_{t=2}^{n} \eta_t e_{t-1}}{\sum_{t=2}^{n} e_{t-1}^2}}{\frac{\sigma^2_{1n}}{\sigma^2_n}} \right)^2 + o_p(1). \]

It is easily proven that

\[\frac{\sum_{t=2}^{n} \eta_t e_{t-1}}{\sigma_0 \sqrt{\sum_{t=2}^{n} e_{t-1}^2}} \rightarrow N(0,1). \]

(4.35)

Thus, by (4.33)–(4.35), we finish the proof of (3.8).

Next we prove (3.9). Under \(H_{02} : f_i(\theta) = \theta, g(u) = u \), and \(y_t = x_t^T \hat{\beta}_0 + e_t \), we have

\[\tilde{e}_t(2) = y_t - x_t^T \hat{\beta}_{2n} = x_t^T \hat{\beta}_0 - x_t^T \hat{\beta}_{2n} + e_t = x_t^T \left(\hat{\beta}_0 - \hat{\beta}_{2n} \right) + e_t. \]

(4.36)

Hence

\[\tilde{e}_t(2) - \hat{\theta}_{2n} \tilde{e}_{i-1}(2) = x_t^T \left(\hat{\beta}_0 - \hat{\beta}_{2n} \right) + e_t - \hat{\theta}_{2n} \left(x_{i-1}^T \left(\hat{\beta}_0 - \hat{\beta}_{2n} \right) + e_{i-1} \right) \]

\[= \left(x_t^T - \hat{\theta}_{2n} x_{i-1}^T \right) \left(\hat{\beta}_0 - \hat{\beta}_{2n} \right) + \eta_t. \]

(4.37)

By (2.8), (2.10), we have

\[0 = \sum_{t=2}^{n} \left(\tilde{e}_t(2) - \hat{\theta}_{2n} \tilde{e}_{i-1}(2) \right) \left(x_t - \hat{\theta}_{2n} x_{i-1} \right) \]

\[= \sum_{t=2}^{n} \left(x_t^T - \hat{\theta}_{2n} x_{i-1}^T \right) \left(\hat{\beta}_0 - \hat{\beta}_{2n} \right) \left(x_t - \hat{\theta}_{2n} x_{i-1} \right) + \sum_{t=2}^{n} \eta_t \left(x_t - \hat{\theta}_{2n} x_{i-1} \right). \]

(4.38)
From (4.38), we obtain,

$$
\hat{\beta}_{2n} - \beta_0 = X_{2n}^{-1} \left(\hat{\theta}_{2n} \right) \sum_{i=2}^{n} \eta_i \left(x_i - \hat{\theta}_{2n} x_{i-1} \right).
$$

(4.39)

Thus, by (4.37), (4.39) and Lemma 4.2, we have

$$(n - 1)\hat{\sigma}_{2n}^2 = \sum_{t=2}^{n} \left(\tilde{e}_t(2) - \hat{\theta}_{2n} \tilde{e}_{t-1}(2) \right)^2 $$

$$
= \sum_{t=1}^{n} \eta_t^2 + \left(\beta_0 - \hat{\beta}_{2n} \right)^T X_{2n} \left(\hat{\theta}_{2n} \right) \left(\beta_0 - \hat{\beta}_{2n} \right) + 2 \left(\beta_0 - \hat{\beta}_{2n} \right)^T \sum_{t=2}^{n} \eta_t \left(x_t - \hat{\theta}_{2n} x_{t-1} \right)
$$

$$
= \sum_{t=1}^{n} \eta_t^2 - \left(\sum_{t=2}^{n} \eta_t \left(x_t - \hat{\theta}_{2n} x_{t-1} \right) \right)^T X_{2n}^{-1} \left(\hat{\theta}_{2n} \right) \left(\sum_{t=2}^{n} \eta_t \left(x_t - \hat{\theta}_{2n} x_{t-1} \right) \right)
$$

$$
= \sum_{t=1}^{n} \eta_t^2 - \left(\sum_{t=2}^{n} \eta_t X_{2n}^{-1/2} (\beta_0) (x_t - \hat{\theta}_{2n} x_{t-1}) \right)^2 + o_P(1).
$$

(4.40)

By (3.3)–(3.5), we have

$$
d_{2n} = \tilde{L}_{2n} - \tilde{L}_n = (n - 1) \ln \left(\frac{\hat{\sigma}_{2n}^2}{\hat{\sigma}_n^2} \right) = (n - 1) \left(\left(\frac{\hat{\sigma}_{2n}^2}{\hat{\sigma}_n^2} \right) - 1 \right) + o_P(1).
$$

(4.41)

Under the H_{02}, by (4.26), (4.40), and (4.41), we obtain

$$
\frac{(n - 1)\left(\hat{\sigma}_{2n}^2 - \hat{\sigma}_n^2 \right)}{\hat{\sigma}_n^2} = \frac{\left(\sum_{t=2}^{n} \eta_t \tilde{e}_{t-1} \right)^2}{\sum_{t=2}^{n} \eta_t \tilde{e}_{t-1}^2} + o_P(1)
$$

$$
= \frac{\left(\sum_{t=2}^{n} \eta_t \tilde{e}_{t-1} \right)^2}{\sum_{t=2}^{n} \eta_t \tilde{e}_{t-1}^2} + o_P(1).
$$

(4.42)

Thus, by (3.35), (4.42), (3.9) holds.

Finally, we prove (3.10). Under H_{03}, we have

$$
\tilde{e}_t(3) = y_t - \frac{e^{x_t^T \hat{\beta}_m}}{1 + e^{x_t^T \hat{\beta}_m}} \frac{e^{x_t^T \hat{\beta}_m}}{\left(1 + e^{x_t^T \hat{\beta}_m} \right)^2} x_t^T \left(\hat{\beta}_0 - \hat{\beta}_{3n} \right) + \tilde{e}_t.
$$

(4.43)
Thus
\[
\hat{e}_t(3) - \tilde{\theta}_3n\hat{e}_{t-1}(3) = \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 (\hat{\theta}_0 - \hat{\beta}_{3n}) + e_t
\]
\[
- \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 (\hat{\theta}_0 - \hat{\beta}_{3n}) - \tilde{\theta}_3n e_{t-1}
\]
\[
= \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right) (\hat{\theta}_0 - \hat{\beta}_{3n}) + \eta_t.
\]

By (2.8) and (2.10), we have
\[
0 = \sum_{i=2}^{n} \left(\hat{e}_t(3) - \tilde{\theta}_3n\hat{e}_{t-1}(3) \right) \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right)
\]
\[
= \sum_{i=2}^{n} \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right)
\]
\[
\times \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x_1 \right)
\]
\[
+ \sum_{i=2}^{n} \eta_t \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right)
\]
\[
= (\hat{\beta}_0 - \hat{\beta}_{3n})^T X_3n (\hat{\beta}_{3n}, \hat{\beta}_{3n}^{**}, \tilde{\theta}_3n) + \sum_{i=2}^{n} \eta_t \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right).
\]

From (4.45), we obtain
\[
\hat{\beta}_{3n} - \beta_0 = X_3n^{-1} (\hat{\beta}_{3n}, \hat{\beta}_{3n}^{**}, \tilde{\theta}_3n) \sum_{i=2}^{n} \eta_t \left(\frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 - \tilde{\theta}_3n \frac{e^{x^T\hat{\beta}_{3n}}}{1 + e^{x^T\hat{\beta}_{3n}}} x^T_1 \right). \tag{4.46}
\]
By (4.44), (4.46) and Lemma 4.2, we have

\[(n - 1)\tilde{\sigma}^2_{3n} = \sum_{t=2}^{n} (\tilde{\varepsilon}_t(3) - \tilde{\theta}_3n\tilde{\varepsilon}_{t-1}(3))^2\]

\[= \sum_{t=1}^{n} \eta_t^2 + \left(\hat{\beta}_0 - \tilde{\beta}_3n\right)^T X_{3n}(\tilde{\beta}^{**}_{3n}, \tilde{\beta}^{**}_{3n}, \tilde{\theta}_3n)(\hat{\beta}_0 - \tilde{\beta}_3n)\]

\[+ 2\left(\hat{\beta}_0 - \tilde{\beta}_3n\right)^T \sum_{t=2}^{n} \eta_t \left(\frac{e^{x_t^T \tilde{\beta}^{**}_{3n}}}{\left(1 + e^{x_t^T \hat{\beta}^{**}_{3n}}\right)^2} x_t - \tilde{\theta}_3n \frac{e^{x_{t-1}^T \tilde{\beta}^{**}_{3n}}}{\left(1 + e^{x_{t-1}^T \hat{\beta}^{**}_{3n}}\right)^2} x_{t-1}\right)\]

\[= \sum_{t=1}^{n} \eta_t^2 - \left(\sum_{t=2}^{n} \eta_t X_{3n}^{-1/2}(\tilde{\beta}^{**}_{3n}, \tilde{\beta}^{**}_{3n}, \tilde{\theta}_3n)\right)\]

\[\times \left(\frac{e^{x_t^T \tilde{\beta}^{**}_{3n}}}{\left(1 + e^{x_t^T \hat{\beta}^{**}_{3n}}\right)^2} x_t - \tilde{\theta}_3n \frac{e^{x_{t-1}^T \tilde{\beta}^{**}_{3n}}}{\left(1 + e^{x_{t-1}^T \hat{\beta}^{**}_{3n}}\right)^2} x_{t-1}\right)\]

\[= \sum_{t=1}^{n} \eta_t^2 - \left(\sum_{t=2}^{n} \eta_t X_{3n}^{-1/2}(\hat{\beta}_0)\left(\frac{e^{x_t^T \hat{\beta}_0}}{\left(1 + e^{x_t^T \hat{\beta}_0}\right)^2} x_t - \hat{\theta}_0 \frac{e^{x_{t-1}^T \hat{\beta}_0}}{\left(1 + e^{x_{t-1}^T \hat{\beta}_0}\right)^2} x_{t-1}\right)\right)^2 + o_p(1).\]

(4.47)

By (3.3)–(3.5), we know that

\[d_{3n} = \tilde{L}_{3n} - \hat{L}_n = (n - 1) \ln \left(\frac{\hat{\sigma}^2_{3n}}{\sigma^2_n}\right) = (n - 1) \left(\left(\frac{\hat{\sigma}^2_{3n}}{\sigma^2_n}\right) - 1\right) + o_p(1).\]

(4.48)

Under the \(H_{03}\), by (4.26), (4.47) and (4.48), we have

\[\frac{(n - 1)(\hat{\sigma}^2_{3n} - \hat{\sigma}^2_n)}{\hat{\sigma}^2_n} = \frac{\left(\sum_{t=2}^{n} \eta_t \varepsilon_{t-1}\right)^2}{\sigma_0^2 \sum_{t=2}^{n} \varepsilon^2_{t-1}} + o_p(1).\]

(4.49)

Thus, (3.10) follows from (4.48), (4.49), and (4.35). Therefore, we complete the proof of Theorem 3.1.

5. Conclusions and Open Problems

In the paper, we consider the generalized linear model with FCA processes, which includes many special cases, such as an ordinary regression model, an ordinary generalized regression model, a linear regression model with constant coefficient autoregressive processes, time-dependent and function coefficient autoregressive processes, constant coefficient autoregressive processes, time-dependent or time-varying autoregressive processes, and a linear
regression model with functional coefficient autoregressive processes. And then we obtain the QML estimators for some unknown parameters in the generalized linear mode model and extend some estimators. At last, we use pseudo LR method to investigate three hypothesis tests of interest and obtain the asymptotic chi-squares distributions of statistics. However, several lines of future work remain open.

(1) It is well known that a conventional time series can be regarded as the solution to a differential equation of integer order with the excitation of white noise in mathematics, and a fractal time series can be regarded as the solution to a differential equation of fractional order with a white noise in the domain of stochastic processes (see [25]). In the paper, \(\{ \varepsilon_t \} \) is a conventional nonlinear time series. We may investigate some hypothesis tests by pseudo LR method when the \(\{ \varepsilon_t \} \) is a fractal time series (the idea is given by an anonymous reviewer). In particular, we assume that

\[
\sum_{i=0}^{p} a_{p-i} D^{\nu_i} \varepsilon_t = \eta_t, \tag{5.1}
\]

where \(\nu_p, \nu_{p-1}, \ldots, \nu_0 \) is strictly decreasing sequence of nonnegative numbers, \(a_i \) is a constant sequence, and \(D^{\nu} \) is the Riemann-Liouville integral operator of order \(\nu > 0 \) given by

\[
D^{\nu} h(t) = \frac{1}{\Gamma(\nu)} \int_0^t (t-u)^{\nu-1} h(u) du,
\]

where \(\Gamma \) is the Gamma function, and \(h(t) \) is a piecewise continuous on \((0, \infty) \) and integrable on any finite subinterval of \([0, \infty) \) (See [25, 26]). Fractal time series may have a heavy-tailed probability distribution function and has been applied various fields of sciences and technologies (see [25, 27–32]). Thus it is very significant to investigate various regression models with fractal time series errors, including regression model (1.1) with (5.1).

(2) We may investigate the others hypothesis tests, for example:

- \(H_{04}: f_i(\theta) = 0, g(u) = u, \sigma_0^2 > 0; \)
- \(H_{05}: f_i(\theta) = \theta, g(u) = 0, \sigma_0^2 > 0; \)
- \(H_{06}: f_i(\theta) = 0, g(u) = e^{u}/(1 + e^{u}), \sigma_0^2 > 0; \)
- \(H_{07}: f_i(\theta) = a_t \) and \(g(u) \) is a continuous function, \(\sigma_0^2 > 0; \)
- \(H_{08}: f_i(\theta) = a_t, g(u) = u, \sigma_0^2 > 0; \)
- \(H_{09}: f_i(\theta) = a_t, g(u) = e^{u}/(1 + e^{u}), \sigma_0^2 > 0. \)

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments which have led to this much improved version of the paper. The paper was supported by Scientific Research Item of Department of Education, Hubei (no. D20112503), Scientific Research Item of Ministry of Education, China (no. 209078), and Natural Science Foundation of China (no. 11071022, 11101174).
References

Submit your manuscripts at http://www.hindawi.com