ON A GENERALIZATION OF A THEOREM BY VOSPER

Oriol Serra
UPC, Jordi Girona, 1, 08034 Barcelona, Spain
oserra@mat.upc.es

Gilles Zémor
ENST, 46 rue Barrault, 75 634 Paris 13, France
zemor@infres.enst.fr

Received: 4/7/00, Accepted: 8/4/00, Published: 8/4/00

Abstract

Let S, T be subsets of $\mathbb{Z}/p\mathbb{Z}$ with $\min\{\vert S\vert, \vert T\vert\} > 1$. The Cauchy–Davenport theorem states that $\vert S + T\vert \geq \min\{p, \vert S\vert + \vert T\vert - 1\}$. A theorem by Vosper characterizes the critical pair in the above inequality. We prove the following generalization of Vosper’s theorem. If $\vert S + T\vert \leq \min\{p - 2, \vert S\vert + \vert T\vert + m\}$, $2 \leq \vert S\vert, \vert T\vert$, and $\vert S\vert \leq p - \left(\frac{m+4}{2}\right)$, then S is a union of at most $m + 2$ arithmetic progressions with the same difference. The term $\left(\frac{m+4}{2}\right)$ is best possible, i.e. cannot be replaced by a smaller number.

1. Introduction

One of the subjects of additive number theory is the study of inverse problems, i.e. the study of the structure of subsets S and T of a group such that the cardinality $\vert S + T\vert$ is “small”. The oldest result in this vein is the Cauchy-Davenport theorem which states that $\vert S + T\vert \geq \min\{p, \vert S\vert + \vert T\vert - 1\}$ for any subsets S, T of a group of prime order p. Vosper’s theorem [6] characterizes the sets for which equality holds. It states:

Theorem 1 (Vosper) Let S and T be subsets of a group of prime order p such that $\vert S\vert \geq 2$, $\vert T\vert \geq 2$, and $\vert S + T\vert < p - 1$. Then either $\vert S + T\vert \geq \vert S\vert + \vert T\vert$, or S and T are in arithmetic progression with the same difference.

Freiman [1] gave the following improvement of Vosper’s Theorem in the case when $S = T$.

Theorem 2 (Freiman) Let S be a subset of a group of prime order p such that $\vert S\vert < p/35$. Suppose that $\vert S + S\vert \leq 2\vert S\vert + m$ with $m \leq \frac{2}{3}\vert S\vert - 3$. Then S is contained in an arithmetic progression of length at most $\vert S\vert + m + 1$.
As far as we know, the first improvement of Vosper’s result for different sets \(S \) and \(T \) is the recent result of Hamidoune and Rødseth [5] who proved:

Theorem 3 (Hamidoune-Rødseth) Let \(S \) and \(T \) be subsets of a group of prime order \(p \), such that \(|S| \geq 3 \), \(|T| \geq 3 \), \(7 \leq |S + T| \leq p - 4 \). Then either \(|S + T| \geq |S| + |T| + 1 \), or \(S \) and \(T \) are contained in arithmetic progressions with the same difference and \(|S| + 1 \) and \(|T| + 1 \) elements respectively.

In another direction, the Cauchy-Davenport theorem was generalized to arbitrary Abelian groups by Mann [2, p. 2]:

Theorem 4 (Mann) Let \(S \) be a subset of an arbitrary Abelian group \(G \). Then one of the following holds:

(i) for every subset \(T \) such that \(S + T \neq G \) we have \(|S + T| \geq |S| + |T| - 1 \).

(ii) there exists a proper subgroup \(H \) of \(G \) such that \(|S + H| < |S| + |H| - 1 \).

The following theorem of Hamidoune [4] is both a generalization of Mann’s theorem and of Vosper’s theorem.

Theorem 5 (Hamidoune) Let \(G \) be a (not necessarily Abelian) group generated by a finite subset \(S \) containing \(0 \). Suppose that every nonzero element of \(G \) has order \(\geq |S| \). Then one of the following holds:

(i) for every subset \(T \) such that \(2 \leq |T| < \infty \), we have \(|S + T| \geq \min(|G| - 1, |S| + |T|) \).

(ii) \(S \) is an arithmetic progression.

Notice the similarity between Mann’s and Hamidoune’s theorems 4 and 5. Together they state, broadly speaking, that subsets \(S \) of a group for which \(S + T \) is “small” for some \(T \) tend either to cluster around subgroups or to be an arithmetic progression.

A very interesting feature of Hamidoune’s proof of his result is that it unites Theorems 1 and 4 under a short, elegant, and insightful explanation. This involves defining \(k \)-isoperimetric numbers and \(k \)-atoms associated to \(S \). It turns out that the 1–atoms lead naturally to the subgroup \(H \) in Theorem 4 and that the 2–atoms lead to the difference of the arithmetic progression in Theorem 5.

In this paper, we study the 2–atoms of an arbitrary subset \(S \) of a group of prime order and give a sufficient condition on \(|S| \) for them to be of cardinality two. We shall see that this condition is necessary in very many situations. This leads to a further generalization of Vosper’s theorem in the prime order case. Our main result is:
Theorem 6 Let m be a non-negative integer and let S be a subset of a group of prime order p such that $2 \leq |S| < p - \binom{m+4}{2}$. Then either
\[|S + T| > |S| + |T| + m, \]
for any subset T such that $2 \leq |T|$ and $|S + T| \leq p - 2$, or S is the union of at most $m + 2$ arithmetic progressions with the same difference.

Our proof leads to the condition $|S| < p - \binom{m+4}{2}$ in a natural way, and we shall see that this bound is best possible. More precisely, there exist subsets S of $\mathbb{Z}/p\mathbb{Z}$ with cardinality $p - \binom{m+4}{2}$ that are not the union of at most $m + 2$ arithmetic progressions and for which $|S + T| \leq |S| + |T| + m \leq p - 2$ for some subset $|T| \geq 2$. Note that this situation is unlike that of \mathbb{Z}, but these sets S have to be “large”, i.e. $|S| \geq p - \binom{m+4}{2}$.

2. Atoms

Let S be a fixed subset of $\mathbb{Z}/p\mathbb{Z}$ with $0 \in S$. For a subset $X \subset G$ we write
\[N_S(X) = (X + S) \setminus X. \]
We omit the subscript S when the reference to it is clear from the context. If $0 \in X$, we write $X^* = X \setminus \{0\}$.

Following the terminology of Hamidoune [4], we say that S is k–separable if there is $X \subset \mathbb{Z}/p\mathbb{Z}$ such that $|X| \geq k$ and $|X + S| \leq p - k$. If S is k–separable, the k–isoperimetric connectivity of S is
\[\kappa_k(S) = \min\{|N(X)|, X \subset \mathbb{Z}/p\mathbb{Z}, k \leq |X| \text{ and } |X + S| \leq p - k\}, \]
and the k–isoperimetric number of S is
\[d_k(S) = \min\{|N(X)|, X \subset \mathbb{Z}/p\mathbb{Z}, |X| = k\}. \]
We say that a subset $F \subset G$ is a k–fragment of S if $|N(F)| = \kappa_k(S)$, $|F| \geq k$ and $|F + S| \leq p - k$. A k–fragment of minimum cardinality is said to be a k–atom of S. We denote by $\alpha_k(S)$ the cardinality of a k–atom of S. Note that $\alpha_k(S) > 0$ if and only if $\kappa_k(S) < d_k(S)$. Note also that, when $|S| = 2$ and S is k–separable, then $\alpha_k(S) = k$ and $\kappa_k(S) = 1$. To avoid trivial cases we always assume that $|S| > 2$.

The following basic property of k–atoms is proved in [4].

Theorem 7 Let A be a k–atom and let F be a k–fragment of a subset $S \subset \mathbb{Z}/p\mathbb{Z}$ with $0 \in S$. Then, either $A \subset F$ or $|A \cap F| \leq k - 1$.

This theorem has a number of consequences. We use it here to derive some intermediate results that we shall need. For the rest of this section it is always assumed that S is a 2–separable subset of $\mathbb{Z}/p\mathbb{Z}$, $0 \in S$, and $|S| \geq 3$.
Proposition 8 Let \(A \) be a 2–atom of \(S \). Then, \(|A|(|A| - 1) \leq 2\kappa_2(S)\).

Proof. We may assume \(|A| > 2\). Let \(S = \{0 = s_0, s_1, \ldots, s_r\}, r \geq 2 \). We have

\[
\kappa_2(S) = |A + S| - |A| = \left| \bigcup_{i=1}^r [(A + s_i) \setminus \bigcup_{0 \leq j < i}(A + s_j)] \right|.
\]

(1)

If \(A \) is a 2–atom then so is \(A + z \) for any \(z \). Therefore equation (1) and Theorem 7 imply

\[
\kappa_2(S) \geq (|A| - 1) + (|A| - 2) + \max\{|A| - 3, 0\} + \ldots + \max\{|A| - r, 0\}.
\]

If \(|A| > |S|\) then \(|A + S| - |A| \geq (|A| - 1) + (|A| - 2) \geq 2|A| - 3 \geq 2|S| - 1 \geq d_2(S)\), which implies \(\alpha_2(S) = 2 \). Hence \(|A| \leq |S|\). Therefore,

\[
\kappa_2(S) \geq (|A| - 1) + \ldots + 2 + 1 = |A|(|A| - 1)/2,
\]

as claimed. \(\blacksquare \)

Recall that \(X \subset G \) is a Sidon set if \(|2X| = (|X|)^2+1\), that is, there are no two unordered pairs of (possibly equal) elements in \(X \) with the same sum. The following is an easy consequence of Theorem 7.

Proposition 9 Let \(A \) be a 2–atom of \(S \). If \(|A| > 2\) then \(A \) is a Sidon set.

Proof. Suppose that \(x + y = x' + y' \) for \(x, y, x', y' \) in \(A \). Then \(\{x, y'\} \in (A + x - x') \cap A \). Since \(A + z \) is a 2–atom for each \(z \in \mathbb{Z}/p\mathbb{Z} \), Theorem 7 implies either \(x = y' \) or \(x = x' \). Hence, all twofold sums of elements of \(A \) are different and \(A \) is a Sidon set. \(\blacksquare \)

Proposition 10 Suppose \(S \) is a Sidon set in \(\mathbb{Z}/p\mathbb{Z} \). Then, \(\alpha_2(S) = 2 \).

Proof.

For each \(x \in \mathbb{Z}/p\mathbb{Z} \), \(x \neq 0 \), we have \(|S \cap (S + x)| \leq 1\). For \(k \leq |S| \) let \(X = \{x_1, \ldots, x_k\} \subset \mathbb{Z}/p\mathbb{Z} \). Then,

\[
|N(X)| = |S + X| - |X| = \left| \bigcup_{i=1}^k [(S + x_i) \setminus \bigcup_{j<i}(S + x_j)] \right| - |X| \\
\geq |S| + (|S| - 1) + (|S| - 2) + \cdots + (|S| - |X| + 1) - |X| = \frac{1}{2}|X|(2|S| - |X| - 1).
\]

In particular,

\[
d_k(S) \geq \frac{1}{2}k(2|S| - k - 1).
\]

(2)
Let A be a 2-atom of S and suppose that $|A| > 2$, so that $|N(A)| < d_2(S)$. We have, for any $s \in S^*$, $|S + \{0, s\}| = 2|S| - 1$ so that $|N(\{0, s\})| = 2|S| - 3$; we conclude therefore that $|N(A)| < 2|S| - 3$. But according to the lower bound (2), which is a quadratic function of k with negative leading term and zeros at $k = 0$ and $k = 2|S| - 1$, this implies $|A| > 2|S| - 3$. By Proposition 8 we then have $(2|S| - 3)(2|S| - 4) < 2(2|S| - 4)$, which implies $|S| < 3$ against our assumption. Hence, $\alpha_2(S) = 2$. \hfill \Box

Finally we have:

Proposition 11 Let A be a 2-atom of S. Then, $\alpha_2(A) = 2$. Moreover, $|A| \leq m + 3$, where $m = \kappa_2(S) - |S|$.

Proof. If $\alpha_2(S) = |A| = 2$ there is nothing to prove. Suppose that $|A| > 2$. We may assume that $0 \in A$. By Proposition 9, A is a Sidon set. By Proposition 10 we have $\alpha_2(A) = 2$.

On the other hand, we have $|S + A| - |A| = |S| + m$, which implies

$$|A| + m = |S + A| - |S| \geq \kappa_2(A) = d_2(A) = 2|A| - 3.$$

Hence $|A| \leq m + 3$. \hfill \Box

3. Surjective pairs of subsets

To prove that a set S is the union of sufficiently few arithmetic progressions, say of difference a, our basic strategy is to show that $\{0, a\}$ is a 2-atom of S. This is why, in this section, we study 2-atoms A of sets S such that $|A| > 2$. We shall prove that these 2-atoms have very special structure, namely that they define, together with S, surjective pairs. Before defining this concept we need some notation.

Let Y be a fixed subset of $\mathbb{Z}/p\mathbb{Z}$. For each subset $X \subset \mathbb{Z}/p\mathbb{Z}$ and each integer $i \geq 2$ we denote

$$N_i(X) = N_Y(X + (i - 1)Y),$$

where $iY = Y + \ldots + Y$. We write $N_0(X) = X$ and $N_1(X) = N_Y(X)$. Note that

$$N_{i+1}(X) = (N_i(X) + Y) \setminus \bigcup_{0 \leq j \leq i} N_i(X).$$

For a subset U of Y and $i \geq 1$, we denote by $N_i^U(X)$ the set of elements $z \in N_i(X)$ such that $z - U \subset N_{i-1}(X)$ and U is a maximal subset of Y with this property. We also write

$$N_i^{\leq U}(X) = \bigcup_{V \subset U} N_i^V(X).$$
Lemma 12 For each $U \subset Y$ and $i \geq 1$, if $N_{i+1}^U(X) \neq \emptyset$ then
\[N_{i+1}^U(X) - U \subset N_i^{\leq U}(X). \]

Proof. Let $z \in N_{i+1}^U(x) \setminus U$, $u \in U$ and $z' = z - u \in N_i(X)$. Then $z' \in N_i^V(Y)$ for some subset V of Y. But, for any $v \in V$, we have $z - v = z' - v + u \in N_i(Y)$ for some $j < i + 1$. Since $z \in N_{i+1}(X)$ we must have $j = i$: this implies $V \subset U$. In particular, if $N_{i+1}^U(X) \neq \emptyset$, then $N_{i+1}^U(X) - U \subset \bigcup_{V \subset U} N_i^V(X) = N_i^{\leq U}(X)$. \qed

Definition A pair (X, Y) of subsets of $\mathbb{Z}/p\mathbb{Z}$ is said to be h-surjective if $X, Y \neq \mathbb{Z}/p\mathbb{Z}$ and
\[|(z - Y) \cap X| \geq h \quad \text{for each } z \in N_Y(X). \tag{3} \]

The following two lemmas are the key steps in our proof of Theorem 6.

Lemma 13 Let S be a 2-separable subset of $\mathbb{Z}/p\mathbb{Z}$ and let A be a 2-atom of S such that $|A^*| \geq 2$. Then

(i) (S, A) is a 2-surjective pair, and

(ii) $(S + A, A)$ is a $|A^*|$-surjective pair.

Proof. We may assume that $0 \in A$. Let $z \in N_A(S)$ and suppose that there is only a single element $z' \in A$ such that $z - z' \in S$. Let $A' = A \setminus \{z\}$. Then $|A + S| = |(A' + S) \cup \{z\}| = |A' + S| + 1$. Therefore, $|N_S(A)| = |N_S(A')|$ and $|A'| \geq 2$, contradicting the minimality of A. Hence, (S, A) is 2-surjective.

Let U be a subset of A^* with at most $|A| - 2$ elements.

By Lemma 12 and the Cauchy-Davenport theorem, if $N_i^U(S) \neq \emptyset$ for some $i \geq 2$, then we have
\[|N_i^{\leq U}(S)| \geq |N_i^U(S) - U| \geq |N_i^U(S)| + |U| - 1. \tag{4} \]

If $|U| \leq |N_i^{\leq U}(S)|$, then
\[|S + (A \setminus U)| - |A \setminus U| \geq |S + A| - |N_i^{\leq U}(S)| + |U| - |A| \leq |S + A| - |A|, \]
thus contradicting the hypothesis that A is a 2-atom. Hence,
\[|N_i^{\leq U}(S)| \leq |U| - 1, \quad U \subset A^*, |U| \leq |A| - 2. \]

Therefore, if $N_i^U(S) \neq \emptyset$, then (4) implies
\[|N_i^U(S)| \leq |N_i^{\leq U}(S)| - (|U| - 1) \leq 0, \]
a contradiction. Hence $N_i^U(S) = \emptyset$ for each proper subset of A^* and therefore $(S + A, A)$ is an $|A^*|$-surjective pair. \qed
Lemma 14 Let \((X, Y)\) be an \(h\)-surjective pair in \(\mathbb{Z}/p\mathbb{Z}\) and \(i \geq 1\). If \(X + iY \neq \mathbb{Z}/p\mathbb{Z}\) then \((X + iY, Y)\) is also an \(h\)-surjective pair. In particular, if \(|N_i^{\leq U}(X)| < h\) for some \(U \subset Y\) and \(i \geq 1\) then \(N_{i+1}^{U}(X) = \emptyset\).

Proof. Assume that \((X + (i-1)Y, Y)\) is \(h\)-surjective for some \(i \geq 1\). We have \(N_1(X + (i-1)Y) = N_i(X)\). For each subset \(U\) of \(Y\) with strictly less than \(h\) elements, we have \(N_i^{\leq U}(X) = \emptyset\). If \(N_{i+1}^{U}(X) \neq \emptyset\), \(i \geq 1\) then Lemma 12 implies \(N_i^{U}(X) - U \subset N_i^{\leq U}(X) = \emptyset\), a contradiction. Therefore, \((X + iY, Y)\) is also \(h\)-surjective. The first part of the result follows by induction.

Suppose now that \(|N_i^{\leq U}(X)| < h\) for some \(U \subset Y\). Then, if \(N_{i+1}^{U}(X) \neq \emptyset\), Lemma 12 implies \(h > |N_i^{\leq U}(X)| \geq |N_{i+1}^{U}(X) - U| \geq |U|\), this contradicts the \(h\)-surjectivity of \((X + iY, Y)\).

Theorem 15 Let \(S \subset \mathbb{Z}/p\mathbb{Z}\) be a 2-separable subset. If \(\alpha_2(S) > 2\) then

\[
|S| \geq p - \left(\frac{m+4}{2}\right),
\]

where \(m = \kappa_2(S) - |S|\).

Proof. We may assume \(|S| > 2\). Let \(A\) be a 2–atom of \(S\) containing 0 and suppose that \(|A| > 2\).

We use the above notation with \(Y = S\), namely, \(N_i(S) = N_A(S + (i-1)A)\). By definition of \(\kappa_2(S)\) and \(m\) we have \(|S + A| = |A| + |S| + m\), so that \(|N_1(S)| = |A| + m\).

1. Suppose first \(|A| = 3\), so that \(N_1(S) = |A| + 3\).

By Lemma 13 and Lemma 14, if \(S + iA \neq \mathbb{Z}/p\mathbb{Z}, i \geq 1\), then \((S + iA, A)\) is a 2-surjective pair. Therefore \(N_i(S) = \alpha_i^{AT}(S)\) for \(i \geq 2\). If \(N_i(S) \neq \emptyset\), then Lemma 12 implies \(N_i(S) - A^* \subset N_{i-1}(S)\). By the Cauchy-Davenport theorem this implies, for all \(i \geq 2\) such that \(N_i(S) \neq \emptyset\),

\[
|N_i(S)| \leq |N_{i-1}(S)| - 1.
\]

Therefore, \(|N_i(S)| \leq (m + 3) - (i-1) = m + 4 - i\) and \(N_i(S) = \emptyset\) for \(i \geq m + 4\). Hence, \(\mathbb{Z}/p\mathbb{Z} = \bigcup_{i=0}^{m+3} N_i(X)\) which implies

\[
|S| \geq p - \sum_{i=1}^{m+3} |N_i(S)| \geq p - \frac{(m + 3)(m + 4)}{2},
\]

as claimed.

2. Suppose now that \(h + 1 = |A| > 3\). Let us write \(\mathbb{Z}/p\mathbb{Z} = \bigcup_{i=0}^{k} N_i(X)\), so that we have

\[
|S| = p - \sum_{i=1}^{k} |N_i(S)|.
\]
By Lemma 13 and Lemma 14, if \(S + iA \neq \mathbb{Z}/p\mathbb{Z} \), \(i \geq 1 \), then \((S + iA, A)\) is an \(h\)-surjective pair. Therefore \(N_i(S) = N_i^{A^*}(S) \) for \(i \geq 2 \). If \(N_i(S) \neq \emptyset \), then Lemma 12 implies \(N_i(S) - A^* \subset N_i-1(S) \). Since \(A^* \) is a Sidon set with more than 2 elements, it is not an arithmetic progression. By Vosper’s theorem this implies, for all \(i \geq 2 \) such that \(|N_i(S)| > 1 \),

\[
|N_i(S)| \leq |N_i-1(S)| - h.
\]

Therefore, \(|N_2(S)| \leq m + |A| - h = m + 1 \), and if \(k \geq 3 \),

(i) \(|N_i(S)| \leq (m + 1) - (i - 2)h \) for all \(i \) such that \(3 \leq i \leq k - 1 \), and

(ii) either \(|N_k(S)| = 1 \) and \(|N_{k-1}(S)| = h \) or \(|N_k(S)| \leq (m + 1) - (k - 2)h \).

In every case we get \(k \leq 2 + (m + 1)/h \).

By Proposition 11, \(|N_1(S)| = m + |A| \leq 2m + 3 \); therefore, if \(k = 2 \) we get

\[
|N_1(S)| + |N_2(S)| \leq 3m + 4
\]

and it is routinely checked that this is always smaller than \(\binom{m+4}{2} \).

If \(k \geq 3 \) we get

\[
\sum_{i=1}^{k} |N_i(S)| \leq (2m + 3) + (m + 1)(k - 1) - h\frac{(k - 2)(k - 1)}{2} + 1
\]

which gives, since we have supposed \(h \geq 2 \),

\[
\sum_{i=1}^{k} |N_i(S)| \leq (2m + 4) + (k - 1)(m + 1) - (k - 2) \leq (2m + 4) + (k - 1)m,
\]

and, since \(k - 1 \leq 1 + (m + 1)/h \), we get

\[
\sum_{i=1}^{k} |N_i(S)| \leq (3m + 4) + m(m + 1)/2
\]

which is less than \(\binom{m+4}{2} \).

This concludes the proof. \(\blacksquare \)

4. A Proof of Theorem 6: Discussion

Suppose \(S \) is a subset of \(\mathbb{Z}/p\mathbb{Z} \) satisfying the conditions of Theorem 6 and suppose there exists \(T \subset \mathbb{Z}/p\mathbb{Z} \) such that \(2 \leq |T| \), \(|S + T| \leq p - 2 \), and \(|S + T| \leq |S| + |T| + m \). Then, without loss of generality we may suppose \(0 \in S \), and \(S \) is a 2-separable set for which \(\kappa_2(S) \leq |S| + m \). Let \(A \) be a 2-atom of \(S \) containing 0. By Theorem 15 we have \(|A| = 2 \) and therefore

\[
|S + A| \leq |S| + |A| + m = |S| + m + 2.
\]
Let $A = \{0, a\}$. Let $S = S_1 \cup \ldots \cup S_h$ be a partition of S into arithmetic progressions of difference a such that $(S_i + a) \cap S_j = \emptyset$ for each pair of different subscripts i, j. Then,

$$|S + A| = \sum_{i=1}^{h} |S_i + \{0, a\}| = |S| + h,$$

which implies $h \leq m + 2$ and Theorem 6 is proved.

We now show that the term $\binom{m+4}{2}$ in Theorem 6 cannot be reduced. First consider the following example. Let p be a prime number of the form $p = 3b + 1$ for some positive integer b and let $S = [0, b-1] \cup [b+1, 2b-2] \cup [2b+1, 3b-3]$ and $A = \{0, 1, b\}$. Then $|S + A| = |S| + |A|$, i.e. $|N_S(A)| = |S|$. Note that $|S| = p - 6 = \frac{4+9}{2}$. Note also that $|N_S(\{0, x\})| \geq |S| + 1$ for any $x \neq 0$, since otherwise Vosper’s theorem would imply that S is an arithmetic progression of difference x, which can be easily checked not to be the case. This shows that 2-atoms of size more than 2 do exist. Furthermore, by Proposition 11, the size of a 2-atom is at most 3 in this example, so that A is actually a 2-atom of S.

This example can be generalized to sets S with $\kappa_2(S) = |S| + m$ for $m > 0$ and for which $\alpha_2(S) = 3$. They are built with a similar pattern. Let b be a positive integer such that $p = (m + 3)b + 1$ is a prime number. Let

$$S = [0, b-1] \cup [b+1, 2b-2] \cup [2b+1, 3b-3] \cup \ldots \cup [(m+2)b+1, (m+3)b-(m+3)].$$

Again set $A = \{0, 1, b\}$. We have $|S + A| = |S| + |A| + m$. Note that $|S| = p - \binom{m+4}{2}$, i.e. exactly the bound of Theorem 6. It is not quite clear to us how to formally prove that $d_2(S) > |S| + m$, or, equivalently, that S is not the union of k arithmetic progressions for $k \leq m + 2$, but this can be checked by exhaustive search for many values of m as long as p is not too large. In these cases we actually have $\kappa_2(S) = |S| + m$. This is because the second part of the proof of Theorem 15 shows us that atoms of size > 3 are incompatible with $|S|$ achieving the bound $p - \binom{m+4}{2}$: therefore A actually is a 2-atom.

The above examples are sets S

(i) that satisfy $|S + T| = |S| + |T| + m < p - 2$ for some set T containing more than one element,

(ii) that are the union of $m + 3$ arithmetic progressions with the same difference but not less.

Additional examples of sets S of cardinality larger than $p - \binom{m+4}{2}$ can be found

(i) that are the union of $m + k$ arithmetic progressions but not less, for $k > 3$,

(ii) for which we also have $|S + T| = |S| + |T| + m < p - 2$ for some set T containing more than one element.

As a simple example, take $A = \{0, 1, 3, 13, 41\} \subset \mathbb{Z}/91\mathbb{Z}$. Then translates S of $\mathbb{Z}/91\mathbb{Z} \setminus (A + A)$ have $\kappa_2(S) = |S| + 5$, $\alpha_2(S) = 5$, and S is not the union of less than 9 arithmetic progressions.
References

