AFFINE INVARIANTS, RELATIVELY PRIME SETS, AND A PHI FUNCTION FOR SUBSETS OF \(\{1, 2, \ldots, N\} \)

Melvyn B. Nathanson\(^1\)

Lehman College (CUNY), Bronx, New York 10468

melvyn.nathanson@lehman.cuny.edu

Received: 8/15/06, Accepted: 12/29/06, Published: 1/3/07

Abstract

A nonempty subset \(A \) of \(\{1, 2, \ldots, n\} \) is relatively prime if \(\gcd(A) = 1 \). Let \(f(n) \) and \(f_k(n) \) denote, respectively, the number of relatively prime subsets and the number of relatively prime subsets of cardinality \(k \) of \(\{1, 2, \ldots, n\} \). Let \(\Phi(n) \) and \(\Phi_k(n) \) denote, respectively, the number of nonempty subsets and the number of subsets of cardinality \(k \) of \(\{1, 2, \ldots, n\} \) such that \(\gcd(A) \) is relatively prime to \(n \). Exact formulas and asymptotic estimates are obtained for these functions.

Subject class: Primary 11A25, 11B05, 11B13, 11B75.

Keywords: Relatively prime sets, Euler phi function, combinatorial

1. Affine Invariants

Let \(A \) be a set of integers, and let \(x \) and \(y \) be rational numbers. We define the dilation \(x \ast A = \{xa : a \in A\} \) and the translation \(A + y = \{a + y : a \in A\} \). Sets of integers \(A \) and \(B \) are affinely equivalent if there exist rational numbers \(x \neq 0 \) and \(y \) such that \(B = x \ast A + y \). For example, the sets \(A = \{2, 8, 11, 20\} \) and \(B = \{-4, 10, 17, 38\} \) are affinely equivalent, since \(B = (7/3) \ast A - 26/3, \) and \(A \) and \(B \) are both affinely equivalent to the sets \(C = \{0, 2, 3, 6\} \) and \(D = \{0, 3, 4, 6\}. \) Every set with one element is affinely equivalent to \(\{0\}. \) Every finite set \(A \) of integers with more than one element is affinely equivalent to unique sets \(C \) and \(D \) of nonnegative integers such that \(\min(C) = \min(D) = 0, \) \(\gcd(C) = \gcd(D) = 1, \) and \(D = (-1) \ast C + \max(C). \)

A function \(f(A) \) whose domain is the set \(\mathcal{F}(\mathbb{Z}) \) of nonempty finite sets of integers is called an affine invariant of \(\mathcal{F}(\mathbb{Z}) \) if \(f(A) = f(B) \) for all affinely equivalent sets \(A \) and \(B. \)

\(^1\)This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
For example, if \(A + A = \{a + a' : a, a' \in A\} \) is the sumset of a finite set \(A \) of integers, and if \(A - A = \{a - a' : a, a' \in A\} \) is the difference set of the finite set \(A \), then \(s(A) = \text{card}(A + A) \) and \(d(A) = \text{card}(A - A) \) are affine invariants. More generally, let \(u_0, u_1, \ldots, u_n \) be integers and \(F(x_1, \ldots, x_n) = u_1 x_1 + \cdots + u_n x_n + u_0 \). Define \(F(A) = \{a_1u_1 + \cdots + a_nu_n + u_0 : a_1, \ldots, a_n \in A\} \) for \(i = 1, \ldots, n\). Then \(f(A) = \text{card}(F(A)) \) is an affine invariant.

Let \(f(A) \) be a function with domain \(\mathcal{F}(\mathbb{Z}) \). A frequent problem in combinatorial number theory is to determine the distribution of values of the function \(f(A) \) for sets \(A \) in the interval of integers \(\{0, 1, \ldots, n\} \). For example, if \(A \subseteq \{0, 1, 2, \ldots, n\} \), then \(1 \leq \text{card}(A + A) \leq 2n + 1 \). For \(\ell = 1, \ldots, 2n + 1 \), we can ask for the number of nonempty sets \(A \subseteq \{0, 1, 2, \ldots, n\} \) such that \(\text{card}(A + A) = \ell \). Similarly, if \(\emptyset \neq A \subseteq \{0, 1, 2, \ldots, n\} \) and \(\text{card}(A) = k \), then \(2k - 1 \leq \text{card}(A + A) \leq k(k + 1)/2 \), and, for \(\ell = 2k - 1, \ldots, k(k + 1)/2 \), we can ask for the number of such sets \(A \) with \(\text{card}(A + A) = \ell \). In both cases, there is a redundancy in considering sets that are affinely equivalent, and we might want to count only sets that are pairwise affinely inequivalent.

2. Relatively Prime Sets

A nonempty subset \(A \) of \(\{1, 2, \ldots, n\} \) will be called relatively prime if the elements of \(A \) are relatively prime, that is, if \(\gcd(A) = 1 \). Let \(f(n) \) denote the number of relatively prime subsets of \(\{1, 2, \ldots, n\} \). The first 10 values of \(f(n) \) are 1, 2, 5, 11, 26, 53, 116, 236, 488, and 983. (This is sequence A085945 in Sloane’s *On-Line Encyclopedia of Integer Sequences*.) Let \(f_k(n) \) denote the number of relatively prime subsets of \(\{1, 2, \ldots, n\} \) of cardinality \(k \). We present exact formulas and asymptotic estimates for \(f(n) \) and \(f_k(n) \). These estimates imply that almost all finite sets of integers are relatively prime.

No set of even integers is relatively prime. Since there are \(2^{[n/2]} - 1 \) nonempty subsets of \(\{2, 4, 6, \ldots, 2[n/2]\} \) and \(2^n - 1 \) nonempty subsets of \(\{1, 2, \ldots, n\} \), we have the upper bound

\[
f(n) \leq 2^n - 2^{[n/2]}.
\]

Similarly,

\[
f_k(n) \leq \binom{n}{k} - \binom{[n/2]}{k}.
\]

If \(1 \in A \), then \(A \) is relatively prime. Since there are \(2^{n-1} \) sets \(A \subseteq \{1, 2, \ldots, n\} \) with \(1 \in A \), we have

\[
f(n) \geq 2^{n-1}.
\]

Let \(n \geq 3 \). If \(1 \notin A \) but \(2 \in A \) and \(3 \in A \), then \(A \) is relatively prime and so

\[
f(n) \geq 2^{n-1} + 2^{n-3}.
\]
Let \(n \geq 5 \). If \(1 \notin A \) and \(3 \notin A \), but \(2 \in A \) and \(5 \in A \), then \(A \) is relatively prime. If \(1 \notin A \) and \(2 \notin A \), but \(3 \in A \) and \(5 \in A \), then \(A \) is relatively prime. Therefore,

\[
f(n) \geq 2^{n-1} + 2^{n-3} + 2 \cdot 2^{n-4} = 2^{n-1} + 2^{n-2}.
\]

Similarly,

\[
f_k(n) \geq \binom{n-1}{k-1} + \binom{n-3}{k-2} + 2 \binom{n-4}{k-2}.
\]

3. Exact Formulas and Asymptotic Estimates

Let \([x]\) denote the greatest integer less than or equal to \(x \). If \(x \geq 1 \) and \(n = [x] \), then

\[
\left[\frac{x}{d} \right] = \left[\frac{[x]}{d} \right] = \left[\frac{n}{d} \right]
\]

for all positive integers \(d \).

Let \(F(x) \) be a function defined for \(x \geq 1 \), and define the function

\[
G(x) = \sum_{1 \leq d \leq x} F \left(\frac{x}{d} \right).
\]

In the proof of Theorem 1 we use the following version of the Möbius inversion formula (Nathanson [1, Exercise 5 on p. 222]):

\[
F(x) = \sum_{1 \leq d \leq x} \mu(d) G \left(\frac{x}{d} \right).
\]

Theorem 1 For all positive integers \(n \),

\[
\sum_{d=1}^{n} f \left(\left[\frac{n}{d} \right] \right) = 2^n - 1 \quad (3)
\]

and

\[
f(n) = \sum_{d=1}^{n} \mu(d) \left(2^{[n/d]} - 1 \right). \quad (4)
\]

For all positive integers \(n \) and \(k \),

\[
\sum_{d=1}^{n} f_k \left(\left[\frac{n}{d} \right] \right) = \binom{n}{k} \quad (5)
\]

and

\[
f_k(n) = \sum_{d=1}^{n} \mu(d) \binom{[n/d]}{d}. \quad (6)
\]
Proof. Let A be a nonempty subset of $\{1, 2, \ldots, n\}$. If $\gcd(A) = d$, then $A' = (1/d) \ast A = \{a/d : a \in A\}$ is a relatively prime subset of $\{1, 2, \ldots, [n/d]\}$. Conversely, if A' is a relatively prime subset of $\{1, 2, \ldots, [n/d]\}$, then $A = d \ast A' = \{da' : a' \in A'\}$ is a nonempty subset of $\{1, 2, \ldots, n\}$ with $\gcd(A) = d$. It follows that there are exactly $f([n/d])$ subsets A of $\{1, 2, \ldots, n\}$ with $\gcd(A) = d$, and so

$$
\sum_{d=1}^{n} f\left(\left\lfloor \frac{n}{d} \right\rfloor \right) = 2^n - 1.
$$

We apply Möbius inversion to the function $F(x) = f([x])$. For all $x \geq 1$ we define

$$
G(x) = \sum_{1 \leq d \leq x} F\left(\frac{x}{d}\right) = \sum_{1 \leq d \leq x} f\left(\left\lfloor \frac{x}{d} \right\rfloor \right) = \sum_{d=1}^{[x]} f\left(\left\lfloor \frac{x}{d} \right\rfloor \right) = 2^x - 1
$$

and so

$$
f([x]) = F(x) = \sum_{1 \leq d \leq x} \mu(d) G\left(\frac{x}{d}\right) = \sum_{d=1}^{[x]} \mu(d) (2^{[x/d]} - 1).
$$

For $n \geq 1$ we have

$$
f(n) = \sum_{d=1}^{n} \mu(d) (2^{[n/d]} - 1)
$$

The proofs of (5) and (6) are similar. □

Theorem 2 For all positive integers n and k,

$$
2^n - 2^{[n/2]} - n2^{[n/3]} \leq f(n) \leq 2^n - 2^{[n/2]}
$$

and

$$
\binom{n}{k} - \binom{[n/2]}{k} - n\binom{[n/3]}{k} \leq f_k(n) \leq \binom{n}{k} - \binom{[n/2]}{k}.
$$

Proof. For $n \geq 2$ we have

$$
2^n = f(n) + f([n/2]) + \sum_{d=3}^{n} f\left(\left\lfloor \frac{n}{d} \right\rfloor \right) + 1 \leq f(n) + 2^{[n/2]} + n2^{[n/3]}.
$$

Combining this with (1), we obtain

$$
2^n - 2^{[n/2]} - n2^{[n/3]} \leq f(n) \leq 2^n - 2^{[n/2]}.
$$

This also holds for $n = 1$.

The inequality for $f_k(n)$ follows similarly from (2) and (5). □

Theorem 2 implies that $f(n) \sim 2^n$ as $n \to \infty$, and so almost all finite sets of integers are relatively prime.
4. A phi Function for Sets

The Euler phi function $\varphi(n)$ counts the number of positive integers $a \leq n$ such that a is relatively prime to n. We define the function $\Phi(n)$ to be the number of nonempty subsets A of $\{1, 2, \ldots, n\}$ such that $\gcd(A)$ is relatively prime to n. For example, for distinct primes p and q we have

$$\Phi(p) = 2^p - 2$$
$$\Phi(p^2) = 2^{p^2} - 2^p$$

and

$$\Phi(pq) = 2^{pq} - 2^q - 2^p + 2.$$

Define the function $\Phi_k(n)$ to be the number of subsets A of $\{1, 2, \ldots, n\}$ such that $\text{card}(A) = k$ and $\gcd(A)$ is relatively prime to n. Note that $\Phi_1(n) = \varphi(n)$ for all $n \geq 1$.

Theorem 3 For all positive integers n,

$$\sum_{d \mid n} \Phi(d) = 2^n - 1. \tag{7}$$

Moreover, $\Phi(1) = 1$ and, for $n \geq 2$,

$$\Phi(n) = \sum_{d \mid n} \mu(d) 2^{n/d} \tag{8}$$

where $\mu(n)$ is the Möbius function. Similarly, for all positive integers n and k,

$$\sum_{d \mid n} \Phi_k(d) = \binom{n}{k} \tag{9}$$

and

$$\Phi_k(n) = \sum_{d \mid n} \mu(d) \binom{n/d}{k} \tag{10}$$

Proof. For every divisor d of n, we define the function $\Psi(n, d)$ to be the number of nonempty subsets A of $\{1, 2, \ldots, n\}$ such that the greatest common divisor of $\gcd(A)$ and n is d. Thus,

$$\Psi(n, d) = \text{card} (\{ A \subseteq \{1, 2, \ldots, n\} : A \neq \emptyset \text{ and } \gcd(A \cup \{n\}) = d \}).$$

Then

$$\Psi(n, d) = \Phi \left(\frac{n}{d} \right)$$
and
\[2^n - 1 = \sum_{d|n} \Psi(n, d) = \sum_{d|n} \Phi \left(\frac{n}{d} \right) = \sum_{d|n} \Phi(d). \]

We have \(\Phi(1) = 1 \). For \(n \geq 2 \) we apply the usual Möbius inversion and obtain
\[
\Phi(n) = \sum_{d|n} \mu(d) \left(2^{n/d} - 1 \right)
= \sum_{d|n} \mu(d) 2^{n/d} - \sum_{d|n} \mu(d)
= \sum_{d|n} \mu(d) 2^{n/d}
\]
since \(\sum_{d|n} \mu(n/d) = 0 \) for \(n \geq 2 \).

The proofs of (9) and (10) are similar.

\[\Box \]

Theorem 4 If \(n \) is odd, then
\[\Phi(n) = 2^n + O \left(n^{2n/3} \right) \]
and
\[\Phi_k(n) = \binom{n}{k} + O \left(n \left(\left\lfloor \frac{n}{3} \right\rfloor \right)^k \right). \]

If \(n \) is even, then
\[\Phi(n) = 2^n - 2^{n/2} + O \left(n^{2n/3} \right) \]
and
\[\Phi_k(n) = \binom{n}{k} - \binom{n/2}{k} + O \left(n \left(\left\lfloor \frac{n}{3} \right\rfloor \right)^k \right). \]

Proof. We have
\[
\Phi(n) = \sum_{d=1}^{n \atop \gcd(d,n)=1} \text{card} \left(\{ A \subseteq \{1, 2, \ldots, n\} : A \neq \emptyset \text{ and } \gcd(A) = d \} \right)
= \sum_{d=1}^{n \atop \gcd(d,n)=1} f([n/d]).
\]
Applying Theorem 2, we see that if \(n \) is odd, then

\[
\Phi(n) = f(n) + f([n/2]) + \sum_{d=3, \gcd(d,n)=1}^{n} f([n/d])
\]

\[= \left(2^n - 2^{[n/2]} + O\left(n2^{n/3}\right)\right) + \left(2^{[n/2]} + O\left(2^{n/4}\right)\right) + O\left(n2^{n/3}\right)\]

\[= 2^n + O\left(n2^{n/3}\right).\]

If \(n \) is even, then

\[
\Phi(n) = f(n) + \sum_{d=3, \gcd(d,n)=1}^{n} f([n/d])
\]

\[= \left(2^n - 2^{n/2} + O\left(n2^{n/3}\right)\right) + O\left(n2^{n/3}\right)\]

\[= 2^n - 2^{n/2} + O\left(n2^{n/3}\right).\]

These estimates for \(\Phi(n) \) also follow from identity (8). The estimates for \(\Phi_k(n) \) follow from identity (10). This completes the proof. \(\square \)

Acknowledgements. I thank Greg Martin for the observation that (4) and (6) follow from (3) and (5) by Möbius inversion, and Kevin O’Bryant for helpful discussions.

References