GAPS IN THE SPECTRUM OF NATHANSON HEIGHTS OF PROJECTIVE POINTS

Kevin O’Bryant
Department of Mathematics, City University of New York, College of Staten Island, New York, NY
kevin@member.ams.org

Received: 6/28/07, Revised: 8/20/07, Accepted: 8/22/07, Published: 8/28/07

Abstract

Let \(\mathbb{Z}_m \) be the ring of integers modulo \(m \) (not necessarily prime), \(\mathbb{Z}_m^* \) its multiplicative group, and let \(x \mod m \) be the least nonnegative residue of \(x \) modulo \(m \). The Nathanson height of a point \(r = \langle r_1, \ldots, r_d \rangle \in (\mathbb{Z}_m^*)^d \) is \(h_m(r) = \min \left\{ \sum_{i=1}^{d} (kr_i \mod m) : k = 1, \ldots, p - 1 \right\} \). For \(d = 2 \), we give an explicit formula in terms of the convergents to the continued fraction expansion of \(r_1r_2/m \). Further, we show that the multiset \(\{ m^{-1}h_m((r_1, r_2)) : m \in \mathbb{N}, r_i \in \mathbb{Z}_m^* \} \), which is trivially a subset of \([0, 2] \), has only the numbers \(1/k \) \((k \in \mathbb{Z}^+) \) and \(0 \) as accumulation points.

1. Introduction

In [3], Nathanson and Sullivan raised the problem of bounding the height of points in \((\mathbb{Z}_p^*)^d \), where \(p \) is a prime. After proving some general bounds for \(d > 2 \), they move to identifying those primes \(p \) and residues \(r \) with \(h_p((1, r)) > (p - 1)/2 \). In particular, they prove that if \(h_p((1, r)) < p \), then it is in fact at most \((p + 1)/2 \). Nathanson has further proven [2] that if \(p \) is a sufficiently large prime and \(h_p((1, r)) < (p + 1)/2 \), then it is in fact at most \((p + 4)/3 \). In other words, \(p^{-1}h_p((1, r)) \) is either near 1, near 1/2, or at most 1/3.

In this paper we show that these gaps in the values of \(p^{-1}h_p((1, r)) \) continue all the way to 0, even if \(p \) is not restricted to be prime. The main tool is the simple continued fraction of \(r/p \).

To avoid confusion, as we do not use primeness here, and since the numerators of continued fractions are traditionally denoted by \(p \), we denote our modulus by \(m \). We denote \(a^{-1} \mod m \) by \(\bar{a} \). We use the traditional notation for the floor function (\(\lfloor x \rfloor \) is the largest integer that isn’t larger than \(x \)) and the fractional part (\(\{ x \} = x - \lfloor x \rfloor \)).

\footnote{Supported by PSC-CUNY grant 60070-36 37}
If \(\gcd(r_1, m) = 1 \), then \(h_m((r_1, r_2)) = h_m((1, r_1 r_2)) \), and so we may assume without loss of generality that \(r_1 = 1 \). We are thus justified in making the following definition for relatively prime positive integers \(r, m \):

\[
H(r/m) := m^{-1} \cdot h_m((1, r)) = m^{-1} \cdot \min\{k + (kr \mod m) : 1 \leq k < m\} = \min \left\{ \frac{k}{m} + \left\{ \frac{kr}{m} \right\} : 1 \leq k < m \right\}.
\]

Figure 1 shows the points \((\frac{r}{m}, H(\frac{r}{m}))\) for all \(r, m \leq 200 \).

The spectrum of a set \(M \subseteq \mathbb{N} \), written \(\text{Spec}(M) \), is the set of real numbers \(\beta \) with the property that there are \(m_i \in M \), \(m_i \to \infty \), and a sequence \(r_i \) with \(\gcd(r_i, m_i) = 1 \), and \(H(r_i/m_i) \to \beta \). Nathanson [2] and Nathanson and Sullivan [3] proved that

\[
\text{Spec(primes)} \cap \left[\frac{1}{3}, \infty \right) = \left\{ \frac{1}{3}, \frac{1}{2}, 1 \right\}.
\]

Our main theorem concerns the spectrum of Nathanson heights, and applies to both \(\mathbb{N} \) and to the set of primes.

Theorem 1.1. Let \(M \subseteq \mathbb{Z}^+ \). If \(\{m \in M : \gcd(m, n) = 1\} \) is infinite for every positive integer \(n \), then

\[
\text{Spec}(M) = \{0\} \cup \left\{ \frac{1}{k} : k \in \mathbb{Z}^+ \right\}.
\]
2. Continued Fractions

For a rational number $0 < r/m < 1$, let $[0; a_1, a_2, \ldots, a_n]$ be (either one of) its simple continued fraction expansion, and let p_k/q_k be the k-th convergent. In particular

$$
\frac{p_0}{q_0} = \frac{0}{1},
\frac{p_2}{q_2} = \frac{a_2}{1 + a_1 a_2},
\frac{p_4}{q_4} = \frac{a_2 + a_4 + a_2 a_3 a_4}{1 + a_1 a_2 + a_1 a_4 + a_3 a_4 + a_1 a_2 a_3 a_4}
$$

The q_i satisfy the recurrence $q_{-2} = 1, q_{-1} = 0, q_n = a_n q_{n-1} + q_{n-2}$ (with $a_0 = 0$), and are called the continuants. The intermediants are the numbers $\alpha q_{n-1} + q_{n-2}$, where α is an integer with $1 \leq \alpha \leq a_n$.

Let $E[a_0, a_1, \ldots, a_n]$ be the denominator $[a_0; a_1, \ldots, a_n]$, considered as a polynomial in a_0, \ldots, a_n, and set $E[\] = 1$. Then $p_k = E[a_0, \ldots, a_k]$ and $q_k = E[a_1, \ldots, a_k]$. We will make use of the following combinatorial identities, which are in [4, Chapter 13], with $0 < s < t < n$:

$$
q_\ell = q_k E[a_{k+1}, \ldots, a_\ell] + q_{k-1} E[a_k + 2, \ldots, a_\ell],
$$

$$
p_n E[a_s, \ldots, a_\ell] - p_\ell E[a_s, \ldots, a_n] = (-1)^{t-s+1} E[a_0, \ldots, a_{s-2}] E[a_{t+2}, \ldots, a_n].
$$

The following lemmas are well known. The first is a special case of the “best approximations theorem” [1, Theorems 154 and 182], and the second is an application of [1, Theorem 150], the identity $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$. The third and fourth lemmas follow from the identities for E given above.

Lemma 2.1. Fix a real number $x = [0; a_1, a_2, \ldots]$, and suppose that the positive integer ℓ has the property that $\ell x \leq k x$ for all positive integers $k \leq \ell$. Then there are nonnegative integers $n, \alpha \leq a_n$ such that $\ell = \alpha q_{2n-1} + q_{2n-2}$.

Lemma 2.2. Let $\frac{p_{2k}}{q_{2k}} = [0; a_1, a_2, \ldots, a_{2k}]$, and let $x = [0; a_1, a_2, \ldots, a_{2k-1}, a_{2k} + 1]$. Then

$$
q_{2k} \cdot x - p_{2k} = \frac{1}{2q_{2k} + q_{2k-1}}.
$$

We will use Fibonacci numbers, although the only property we will make use of is that they tend to infinity: $F_1 = 1, F_2 = 2$, and $F_n = F_{n-1} + F_{n-2}$.

Lemma 2.3. For all $k \geq 1$, we have $q_k \geq F_k$. Further, for $\ell > k$, we have

$$
q_\ell > q_k F_{\ell-k}, \quad \text{and} \quad q_\ell > a_\ell q_k.
$$
Lemma 2.4. For $0 < 2k + 2 \leq n$, we have
\[q_{2k}p_n - p_{2k}q_n = E[a_{2k+2}, \ldots, a_n]. \]
Moreover, if $2k + 2 = n + 1$, then $q_{2k}p_n - p_{2k}q_n = 1$.

We now state and prove our formula for heights.

Theorem 2.5. Let $\frac{r}{m} = [0; a_1, a_2, \ldots, a_n]$ (with gcd$(r, m) = 1$). Then
\[H\left(\frac{r}{m}\right) = \min_{0 \leq k < n/2} \left\{ \frac{q_{2k} r + 1}{m} - p_{2k} \right\}. \]

Proof. First, recall that
\[H(r/m) = \min \{k/m + \{kr/m\} : 1 \leq k < m\}. \]
Set
\[I := \{\alpha q_{2i-1} + q_{2i-2} : 0 \leq \alpha \leq a_{2i}, 0 \leq i \leq n/2\}. \]

We call ℓ a best multiplier if
\[\frac{k}{m} + \{\ell r/m\} < k/m + \{kr/m\} \]
for all positive integers $k < \ell$. We begin by proving by induction that the set of best multipliers is contained in the set I. Certainly 1 is a best multiplier and also $1 = 0 \cdot q_{-1} + q_{-2} \in I$. Our induction hypothesis is that the best multipliers that are less than ℓ are all contained in I.

Suppose that ℓ is a best multiplier: we know that
\[\frac{k}{m} + \{\frac{k}{m}\} > \frac{\ell}{m} + \{\frac{\ell}{m}\} \]
for all $1 \leq k < \ell$. Since $k < \ell$, we then know that $\{kr/m\} > (\ell - k)/m + \{\ell r/m\} > \{\ell r/m\}$. Lemma 2.1 now tells us that $\ell \in I$. This confirms the induction hypothesis, and establishes that
\[H(r/m) = \min\{k/m + \{kr/m\} : k \in I\}. \]
(1)

Now, note that the function f_i defined by
\[f_i(x) := \frac{xq_{2i-1} + q_{2i-2}}{m} + \left\{ \frac{xq_{2i-1} + q_{2i-2}}{m} \right\} \]
is monotone on the domain $0 \leq x \leq a_{2i}$. As $0q_{2i-1} + q_{2i-2} = q_{2i-2}$ and $a_{2i}q_{2i-1} + q_{2i-2} = q_{2i}$, this means that the minimum in Eq. (1) can only occur at q_{2i}, with $0 \leq 2i \leq n$.

As a final observation, we note that $q_0/m + \{q_0r/m\} = (r + 1)/m$ is at most as large as $q_n/m + \{q_nr/m\} = 1$ (as $q_n = m$). Thus, the minimum in Eq. (1) cannot occur exclusively at $k = q_n = m$. □
Corollary 2.6. Let \(0 < r < m \), with \(\gcd(r, m) = 1 \), and let \(\frac{r}{m} = [0; a_1, \ldots, a_n] \), with \(a_n \geq 2 \). For all \(k \in (0, n/2) \),

\[
H\left(\frac{r}{m} \right) \leq \frac{q_{2k}}{m} + \frac{1}{2q_{2k}}.
\]

Proof. First, note that \(\frac{r}{m} < [0; a_1, a_2, \ldots, a_{2k-1}, a_{2k} + 1] \). Now, as a matter of algebra (using Lemma 2.2),

\[
q_{2k} \frac{r + 1}{m} - p_{2k} \leq q_{2k} \left([0; a_1, a_2, \ldots, a_{2k} + 1] + \frac{1}{m} \right) - p_{2k} = \frac{q_{2k}}{m} + \frac{1}{2q_{2k} + q_{2k-1}} \\
\leq \frac{q_{2k}}{m} + \frac{1}{2q_{2k}}.
\]

\(\square \)

3. Proof of Theorem 1.1

First, we note that \(H(a_2/(1 + a_1a_2)) = (1 + a_2)/(1 + a_1a_2) \to 1/a_1 \), where \(a_1 \) is fixed and \(a_2 \to \infty \). Thus, \(1/k \in \text{Spec}(\mathbb{N}) \) for every \(k \). Also, \(H(1/a_1) = 2/a_1 \to 0 \) as \(a_1 \to \infty \), so \(0 \in \text{Spec}(\mathbb{N}) \). The remainder of this section is devoted to proving that if \(\beta > 0 \) is in \(\text{Spec}(\mathbb{N}) \), then \(\beta \) is rational with numerator 1.

Fix a large integer \(s \). Let \(r/m \) be a sequence (we will suppress the index) with \(\gcd(r, m) = 1 \) and with \(H(r/m) \to \beta > \frac{1}{F_{2s}} \), where \(F_{2s} \) is the 2s-th Fibonacci number.

Define \(a_1, a_2, \ldots \) by

\[
\frac{r}{m} = [0; a_1, a_2, \ldots, a_n],
\]

and we again remind the reader that \(r/m \) is a sequence, so that each of \(a_1, a_2, \ldots \), is a sequence, and \(n \) is also a sequence. To ease the psychological burden of considering sequences that might not even be defined for every index, we take this occasion to pass to a subsequence of \(r/m \) that has \(n \) nondecreasing. Further, we also pass to a subsequence on which each of the sequences \(a_i \) is either constant or monotone increasing.

First, we show that \(n \) is bounded. Note that \(q_{2s}/m \) (fixed \(s \)) is the same as \(q_{2s}/q_n \), and by Lemma 2.3 this is at most \(1/(2F_{2s}) \), provided that \(n \) is large enough so that \(F_{n-2s} > 2F_{2s} \). Take such an \(n \). We have from Corollary 2.6 that

\[
H\left(\frac{r}{m} \right) \leq \frac{q_{2s}}{m} + \frac{1}{2q_{2s}} < \frac{1}{2F_{2s}} + \frac{1}{2F_{2s}} < \frac{1}{F_{2s}} < \beta.
\]

This contradicts the hypothesis that \(H(r/m) \to \beta > 0 \), and proves that \(n \) must be small enough so that \(F_{n-2s} > 2F_{2s} \).
Since \(m \to \infty \) but \(n \) is bounded, some \(a_i \) must be unbounded. Let \(i \) be the least natural number such that \(a_i \) is unbounded.

First, we show that \(i \) is not odd. If \(i = 2k + 1 \), then

\[
H\left(\frac{r}{m} \right) \leq q_{2k} \frac{r + 1}{m} - p_{2k}
\]

and \(p_{2k} \) and \(q_{2k} \) are constant. Since \(a_{2k+1} \to \infty \), the ratio

\[
\frac{r}{m} \to [0; a_1, a_2, \ldots, a_{2k}] = \frac{p_{2k}}{q_{2k}}.
\]

Thus, since \(q_{2k}/m \leq 1/a_{2k+1} \to 0 \),

\[
H\left(\frac{r}{m} \right) \leq q_{2k} \frac{r + 1}{m} - p_{2k} = q_{2k} \frac{r}{m} + q_{2k} \frac{r}{m} - p_{2k} \to q_{2k} \frac{p_{2k}}{q_{2k}} + 0 - p_{2k} = 0,
\]

contradicting the hypothesis that \(b > 0 \).

Now we show that there are not two \(a_i \)’s that are unbounded. Suppose that \(a_{2k} \) and \(a_j \) are both unbounded, with \(j > 2k \). Then

\[
H\left(\frac{r}{m} \right) \leq q_{2k} \frac{r}{m} + \frac{1}{2q_{2k}}.
\]

Since \(a_{2k} \) is unbounded, \(\frac{1}{2q_{2k}} \to 0 \). And since \(a_j \) is also unbounded,

\[
\frac{q_{2k}}{m} \leq \frac{q_{2k}}{q_j} < \frac{q_{2k}}{q_{j-1}} \cdot \frac{q_{j-1}}{q_j} < \frac{1}{F_{j-1-2k}} \cdot \frac{1}{a_j} \to 0.
\]

Thus

\[
\frac{q_{2k}}{m} + \frac{1}{2q_{2k}} \to 0.
\]

We have shown that there is exactly one \(a_i \) that is unbounded, and that \(i \) is even.

We have \(\frac{r}{m} = [0; a_1, \ldots, a_{2k}, \ldots, a_n] \), with all of the \(a_i \) fixed except \(a_{2k} \), and \(a_{2k} \to \infty \). Now

\[
\lim H\left(\frac{r}{m} \right) = \lim \min_{0 \leq j < n/2} q_{2j} \frac{r + 1}{m} - p_{2j} = \lim \min_{0 \leq j < n/2} \left(\frac{q_{2j}p_n - p_{2j}q_n + q_{2j}}{q_n} \right) = \min_{0 \leq j < n/2} \lim a_{2j} \to \infty \left(\frac{E[a_{2j+2}, \ldots, a_n] + E[a_1, \ldots, a_{2j}]}{E[a_1, \ldots, a_n]} \right)
\]

Using the general identity (for \(s \leq \ell \leq t \))

\[
E[a_s, \ldots, a_t] = a_t E[a_s, \ldots, a_{t-1}] E[a_{t+1}, \ldots, a_t] + E[a_s, \ldots, a_{t-2}] E[a_t + 1, \ldots, a_t] + E[a_s, \ldots, a_{t-1}] E[a_{t+2}, \ldots, a_t]
\]
with \(\ell = 2k \), we can evaluate the limit as \(a_{2k} \to \infty \). We arrive at

\[
\beta = \lim_{m \to \infty} \frac{H(r)}{m} = \min \left\{ \min_{0 \leq j < k} \frac{E[a_{2j+2}, \ldots, a_{2k-1}]E[a_{2k+1}, \ldots, a_n]}{E[a_1, \ldots, a_{2k-1}]E[a_{2k+1}, \ldots, a_n]}, \min_{k \leq j < n/2} \frac{E[a_1, \ldots, a_{2k-1}]E[a_{2k+1}, \ldots, a_{2j}]}{E[a_1, \ldots, a_{2k-1}]E[a_{2k+1}, \ldots, a_n]} \right\}
\]

\[
= \min \left\{ \frac{1}{E[a_1, \ldots, a_{2k-1}]}, \frac{1}{E[a_{2k+1}, \ldots, a_n]} \right\}
\]

In either case, the numerator of \(\beta \) is 1, and the proof of Theorem 1.1 is concluded.

We note that we have actually proved (with a small bit of additional algebra) a quantitative version of the Theorem.

Theorem 3.1. Let \((r_i, m_i)\) be a sequence of pairs of positive integers with \(\gcd(r_i, m_i) = 1 \), \(m_i \to \infty \) and \(\limsup H(r_i/m_i) > 0 \). Then there is a pair of relatively prime positive integers \(a, b \), with \(a \leq b \), a positive integer \(c \), and an increasing sequence \(i_1, i_2, \ldots \) with

\[
r_{i_j} = \frac{am_{i_j} - c}{b} \quad \text{and} \quad H\left(\frac{r_{i_j}}{m_{i_j}}\right) \to \frac{1}{\max\{c, b\}}.
\]

Conversely, if \(m_i \to \infty \), and \(a \leq b \) are two relatively prime positive integers, \(c \) is a positive integer, and \(r_i = \frac{am_i - c}{b} \) is an integer relatively prime to \(m_i \), then \(H(r_i/m_i) \to \frac{1}{\max\{c, b\}} \).

In particular, if for every \(n \) there are arbitrarily large \(m \in M \) with \(\gcd(m, n) = 1 \), then \(\text{SPEC}(M) = \text{SPEC}(\mathbb{N}) \).

References

