FACTORIZATION RESULTS WITH COMBINATORIAL PROOFS

Keresztély Corrádi
Department of General Computer Techniques, Eötvös L. University, Pázmány P. sétány 1/c, Budapest, HUNGARY

Sándor Szabó
Institute of Mathematics and Informatics, University of Pécs, Pécs, HUNGARY
sszabo7@hotmail.com

Received: 6/27/09, Accepted: 9/18/09, Published:

Abstract
Two results on factorization of finite abelian groups are proved using combinatorial character free arguments. The first one is a weaker form of Rédei’s theorem and presented only to motivate the method. The second one is an extension of Rédei’s theorem for elementary 2-groups, which was originally proved by means of characters.

1. Introduction
We will use multiplicative notation in connection with abelian groups. The neutral element of a group will be called identity element and it will be denoted by e. Let G be a finite abelian group and let A_1, \ldots, A_n be subsets of G. The product $A_1 \cdots A_n$ is defined to be the set

$$\{a_1 \cdots a_n : a_1 \in A_1, \ldots, a_n \in A_n\}.$$

The product $A_1 \cdots A_n$ is called direct if

$$a_1, a_2, \ldots, a_{n+1} = a_1 a_2 \cdots a_n,$$

$$a_1, a_2, \ldots, a_{n+1} \in A_1, \ldots, a_1, a_2, \ldots, a_n \in A_n$$

imply that $a_1, a_2, \ldots, a_n = a_1 a_2, \ldots, a_n$. If the product $A_1 \cdots A_n$ is direct and if it is equal to G, then we say that $G = A_1 \cdots A_n$ is a factorization of G.

A subset A of G is called normalized if $e \in A$. A factorization $G = A_1 \cdots A_n$ is called normalized if each A_i is a normalized subset of G. Rédei [2] has proved the following result. Let G be a finite abelian group and let $G = A_1 \cdots A_n$ be a normalized factorization of G. If each $|A_i|$ is a prime, then at least one of the factors A_1, \ldots, A_n must be a subgroup of G.

Examples show that the condition that each factor has a prime number of elements cannot be dropped from Rédei’s theorem. However for elementary 2-groups Sands and Szabó [3] proved the following generalization. Let G be a finite elementary 2-group and let $G = A_1 \cdots A_n$ be a normalized factorization of G. If each $|A_i| = 4$, then at least one of the factors A_1, \ldots, A_n is a subgroup of G.

In this paper we will present an elementary combinatorial argument to verify a weaker version of Rédei’s theorem for elementary p-groups, where p is an odd prime.
Then applying the method to elementary 2-groups we obtain a combinatorial character free proof for the Sands-Szabó result.

2. Elementary \(p \)-groups

Let \(G \) be a finite abelian group of odd order. Let \(G = A_1 \cdots A_n \) be a normalized factorization of \(G \), where each \(|A_i| \) is a prime. By Rédei’s theorem at least one of the factors \(A_1, \ldots, A_n \) is a subgroup of \(G \). Say \(A_i \) is a subgroup of \(G \). Now as \(|A_i| \) is odd, it follows that the product of the elements of \(A_i \) is equal to \(e \). This indicates that the following theorem is a weaker version of Rédei’s theorem. The essential point is that we are able to give a combinatorial proof of this result.

Theorem 1 Let \(p \) be an odd prime. Let \(G \) be a finite elementary \(p \)-group and let \(G = A_1 \cdots A_n \) be a normalized factorization of \(G \), where \(|A_i| = p \), for each \(i, 1 \leq i \leq n \). Let

\[
d_i = \prod_{a \in A_i} a.
\]

Then \(d_i = e \) for some \(i, 1 \leq i \leq n \).

Proof. Assume on the contrary that there is a counterexample

\[
G = A_1 \cdots A_n,
\]

where none of the elements \(d_i \) is equal to \(e \). For \(n = 1 \), the factor \(A_1 \) is equal to \(G \) and so \(d_1 = e \). Thus we may assume that \(n \geq 2 \). Among the counterexamples we choose one with minimal \(n \).

We introduce the following notations. For each \(i, 1 \leq i \leq n \) let

\[
A_i = \{ e, a_{i,1}, \ldots, a_{i,p-1} \},
\]

\[
U_i = \langle a_{i,1} \rangle,
\]

\[
V_i = \langle a_{i,2} \rangle,
\]

\[
X_i = U_i \cup V_i,
\]

\[
d_i = a_{i,1} \cdots a_{i,p-1}.
\]

If \(A_i \) is a subgroup of \(G \), then \(d_i = e \). In the counterexample (1) \(d_i \neq e \) and so \(A_i \) is not a subgroup of \(G \). In particular \(A_1 \neq U_1 \). We may choose the notation such that \(a_{1,2} \notin U_1 \). As a consequence, \(U_1 \neq V_1 \).

By Lemma 5 of [1], in the factorization (1) the factor \(A_1 \) can be replaced by \(U_1, V_1 \) to get the factorizations

\[
G = U_1 A_2 \cdots A_n,
\]

\[
G = V_1 A_2 \cdots A_n,
\]
respectively. From (2), by considering the factor group \(G/U_1 \) we get the factorization

\[
G/U_1 = (A_2U_1)/U_1 \cdots (A_nU_1)/U_1
\]

of \(G/U_1 \). Here

\[
(A_2U_1)/U_1 = \{aU_1 : a \in A_1\}.
\]

The minimality of the counterexample (1) forces that

\[
d_iU_1 = \prod_{a \in A_i} aU_1
\]

must be equal to \(eU_1 \) for some \(i, 2 \leq i \leq n \). Or equivalently \(d_i \in U_1 \) must hold for some \(i, 2 \leq i \leq n \).

Starting with factorization (3) we get that there is an index \(j, 2 \leq j \leq n \), such that \(d_j \in V_1 \).

If \(d_i = d_j \), then by \(d_i \in U_1 \cap V_1 = \{e\} \) we end up with the \(d_i = e \) contradiction. Thus \(d_i \neq d_j \).

The argument above provides that for the index 1 there are indices \(\alpha(1), \beta(1) \) such that \(d_{\alpha(1)}, d_{\beta(1)} \in X_1 \) and \(\alpha(1) \neq \beta(1) \). In general, for the index \(i, 1 \leq i \leq n \) there are indices \(\alpha(i), \beta(i) \) such that \(d_{\alpha(i)}, d_{\beta(i)} \in X_i \) and \(\alpha(i) \neq \beta(i) \).

By Lemma 5 of [1], in the factorization (1) the factor \(A_1 \) can be replaced by \(U_1 \) to get the factorization \(G = U_1A_2 \cdots A_n \). In this factorization the factor \(A_2 \) can be replaced by \(U_2 \) to get the factorization \(G = U_1U_2A_3 \cdots A_n \). It follows that \(U_1 \cap U_2 = \{e\} \). Similar arguments give that

\[
U_1 \cap U_2 = U_1 \cap V_2 = \{e\},
\]

\[
V_1 \cap U_2 = V_1 \cap V_2 = \{e\}.
\]

Therefore

\[
X_1 \cap X_2 = (U_1 \cup V_1) \cap (U_2 \cup V_2) = \{e\}.
\]

In general, \(X_i \cap X_j = \{e\} \) for each \(i, j, 1 \leq i, j \leq n, i \neq j \).

Choose \(i, j \) such that \(1 \leq i, j \leq n, i \neq j \). If \(\alpha(i) = \alpha(j) \), then \(d_{\alpha(i)} = d_{\alpha(j)} \)
and so \(d_{\alpha(i)} \in X_i \cap X_j = \{e\} \) gives the \(d_{\alpha(i)} = e \) contradiction. Thus \(i \neq j \) implies \(\alpha(i) \neq \alpha(j) \). Similar arguments give that \(i \neq j \) implies

\[
\alpha(i) \neq \alpha(j), \quad \alpha(i) \neq \beta(i), \quad \beta(i) \neq \beta(j).
\]

In particular the indices \(\alpha(1), \ldots, \alpha(n) \) form a permutation of the elements \(1, \ldots, n \).

We know that \(\alpha(1) \neq \beta(1) \). Since \(\alpha(1), \ldots, \alpha(n) \) is a permutation of \(1, \ldots, n \), there
is an \(i, 2 \leq i \leq n \), such that \(\alpha(i) = \beta(1) \). This violates \(\alpha(i) \neq \beta(j) \).

The proof is complete. \(\square \)
3. Elementary 2-groups

Theorem 1 is a weaker version of Rédei’s theorem for elementary p-groups where p is an odd prime. The method of the proof of this theorem can be used to prove an extension of Rédei’s theorem. First we present two lemmas.

Let G be a finite abelian group and let $A = \{e, u, v, w\}$ be a subset of G such that $u^2 = v^2 = w^2 = e$. Set

\[
\begin{align*}
U &= \langle v, w \rangle, \\
V &= \langle u, w \rangle, \\
W &= \langle u, v \rangle, \\
X &= U \cup V \cup W, \\
d &= uvw.
\end{align*}
\]

Lemma 2 Let G be a finite abelian group and let $G = AB$ be a factorization of G. If A is a subset defined above, then

\[
G = UB, \quad G = VB, \quad G = WB
\]

are factorizations of G.

Proof. As $G = AB$ is a factorization of G, the sets

\[
eB, uB, vB, wB
\]

form a partition of G. Multiplying the factorization $G = AB$ by u we get the factorization $G = Gu = (Au)B$. So the sets

\[
uB, u^2B, uvB, uwB
\]

form a partition of G. As $u^2 = e$ we get that the sets

\[
uB, eB, wB, uwB
\]

form a partition of G. Comparing the partitions (4) and (5) we get

\[
vB \cup wB = uvB \cup uwB.
\]

From (4) we can see that $eB \cap uB = \emptyset$. Multiplying by v provides that $vB \cap uvB = \emptyset$. It follows that $vB \subset uwB$. A consideration on the cardinalities implies $vB = uwB$.

In other words in (4) wB can be replaced by uvB which shows that the sets

\[
eB, uB, vB, uvB
\]

form a partition of G. Therefore $G = WB$ is a factorization of G. Similar arguments give that $G = VB, G = UB$ are factorizations.

This completes the proof. \qed
Lemma 3 Using the notations introduced before Lemma 2 the subset A is a subgroup of G if and only if $d = e$.

Proof. Suppose that A is a subgroup of G. Let us consider the product of u and v. As $uv \in A$ we face the following possibilities

$$uv = e, \; uv = u, \; uv = v, \; uv = w.$$

The first three lead to the

$$u = v, \; v = e, \; u = e$$

contradictions respectively. Thus $uv = w$. Consequently $uww = e$, that is, $d = e$ as required.

Suppose that $d = e$. Now $e = uvw$ and so $w = uv$. Therefore $A = \langle u, v \rangle$ is a subgroup of G. \hfill \Box$

Theorem 4 Let G be a finite elementary 2-group and let $G = A_1 \cdots A_n$ be a normalized factorization of G, where $|A_i| = 4$, for each i, $1 \leq i \leq n$. Then A_i is a subgroup of G for some i, $1 \leq i \leq n$.

Proof. Assume on the contrary that there is a counterexample

$$G = A_1 \cdots A_n,$$ \hspace{1cm} (6)

where none of the factors A_i is a subgroup of G. For $n = 1$, the factor A_1 is equal to G and so we may assume that $n \geq 2$. Among the counterexamples we choose one for which n is as small as possible.

We introduce the following notation. For each i, $1 \leq i \leq n$ let

$$A_i = \{e, u_i, v_i, w_i \},$$

$$U_i = \langle v_i, w_i \rangle,$$

$$V_i = \langle u_i, v_i \rangle,$$

$$W_i = \langle u_i, w_i \rangle,$$

$$X_i = U_i \cup V_i \cup W_i,$$

$$d_i = u_i v_i w_i.$$

Note that $u_i^2 = v_i^2 = w_i^2 = e$. Since A_i is not a subgroup, by Lemma 3, $d_i \neq e$ must hold.

By Lemma 2, in the factorization (6) the factor A_1 can be replaced by U_1, V_1, W_1 to get the factorizations

$$G = U_1 A_2 \cdots A_n,$$ \hspace{1cm} (7)

$$G = V_1 A_2 \cdots A_n,$$ \hspace{1cm} (8)

$$G = W_1 A_2 \cdots A_n,$$ \hspace{1cm} (9)
respectively. From (7), by considering the factor group G/U_1 we get the factorization

$$G/U_1 = (A_2U_1)/U_1 \cdots (A_nU_1)/U_1$$

of G/U_1. Here

$$(A_iU_1)/U_1 = \{aU_1 : a \in A_i\}.$$

The minimality of the counterexample (6) implies that $(A_iU_1)/U_1$ is a subgroup of G/U_1 for some i, $2 \leq i \leq n$. By Lemma 3 $(u_iU_1)(v_iU_1)(w_iU_1)$ must be equal to eU_1, that is, $u_iv_iw_i \in U_1$. This means $d_i \in U_1$ must hold.

Starting with factorization (8) we get that there is an index j, $2 \leq j \leq n$ such that $d_j \in V_1$. Starting with factorization (9) we get that there is an index k, $2 \leq k \leq n$ for which $d_k \in W_1$.

Note that

$$U_1 \cap V_1 \cap W_1 = (U_1 \cap V_1) \cap W_1 = (\langle v_1, w_1 \rangle \cap \langle u_1, w_1 \rangle) \cap W_1 = \langle w_1 \rangle \cap W_1 = \langle w_1 \rangle \cap \langle u_1, v_1 \rangle = \{e\}.$$

If $d_i = d_j = d_k$, then $d_i \in U_1 \cap V_1 \cap W_1 = \{e\}$ lands on the $d_i = e$ contradiction. Thus d_i, d_j, d_k cannot all be equal.

We may summarize the previous argument in the following way. For the index 1 there are indices $\alpha(1)$, $\beta(1)$, $\gamma(1)$ such that $d_{\alpha(1)}, d_{\beta(1)}, d_{\gamma(1)} \in X_1$ and $\alpha(1)$, $\beta(1)$, $\gamma(1)$ are not all equal. In general, for the index i, $1 \leq i \leq n$ there are indices $\alpha(i)$, $\beta(i)$, $\gamma(i)$ such that $d_{\alpha(i)}, d_{\beta(i)}, d_{\gamma(i)} \in X_i$ and $\alpha(i)$, $\beta(i)$, $\gamma(i)$ are not all equal.

By Lemma 2, in the factorization (6) the factor A_1 can be replaced by U_1 to get the factorization $G = U_1A_2 \cdots A_n$. In this factorization the factor A_2 can be replaced by U_2 to get the factorization $G = U_1U_2A_3 \cdots A_n$. It follows that $U_1 \cap U_2 = \{e\}$. Similar arguments give that

$$U_1 \cap U_2 = U_1 \cap V_2 = U_1 \cap W_2 = \{e\},$$

$$V_1 \cap U_2 = V_1 \cap V_2 = V_1 \cap W_2 = \{e\},$$

$$W_1 \cap U_2 = W_1 \cap V_2 = W_1 \cap W_2 = \{e\}.$$

Therefore,

$$X_1 \cap X_2 = (U_1 \cup V_1 \cup W_1) \cap (U_2 \cup V_2 \cup W_2) = \{e\}.$$

In general, $X_i \cap X_j = \{e\}$ for each i, j, $1 \leq i, j \leq n$, $i \neq j$.
Choose \(i, j \) such that \(1 \leq i, j \leq n, i \neq j \). If \(\alpha(i) = \alpha(j) \), then \(d_{\alpha(i)} = d_{\alpha(j)} \) and so \(d_{\alpha(i)} \in X_i \cap X_j = \{ e \} \) gives the \(d_{\alpha(i)} = e \) contradiction. Thus \(\alpha(i) \neq \alpha(j) \). Similar arguments give that

\[
\begin{align*}
\alpha(i) &\neq \alpha(j), & \alpha(i) &\neq \beta(j), & \alpha(i) &\neq \gamma(j), \\
\beta(i) &\neq \alpha(j), & \beta(i) &\neq \beta(j), & \beta(i) &\neq \gamma(j), \\
\gamma(i) &\neq \alpha(j), & \gamma(i) &\neq \beta(j), & \gamma(i) &\neq \gamma(j).
\end{align*}
\]

In particular the list \(\alpha(1), \ldots, \alpha(n) \) is a permutation of the elements \(1, \ldots, n \). We know that \(\alpha(1), \beta(1), \gamma(1) \) are not all equal, say \(\alpha(1) \neq \beta(1) \). Since \(\alpha(1), \ldots, \alpha(n) \) is a permutation of \(1, \ldots, n \), there is an \(i, 2 \leq i \leq n \) such that \(\alpha(i) = \beta(1) \). This contradicts to \(\alpha(i) \neq \beta(j) \).

The proof is complete. \(\square \)

References

