FINDING ALMOST SQUARES V

Tsz Ho Chan
Dept. of Mathematical Sciences, University of Memphis, Memphis, TN 38152
tchan@memphis.edu

Received: 1/8/10, Accepted: 5/14/10, Published: 11/5/10

Abstract
An almost square of type 2 is an integer \(n \) that can be factored in two different ways as \(n = a_1b_1 = a_2b_2 \) with \(a_1, a_2, b_1, b_2 \approx \sqrt{n} \). In this paper, we continue the study of almost squares of type 2 in short intervals and improve the \(1/2 \) upper bound. We also draw connections with almost squares of type 1.

1. Introduction and Main Results
An almost square (of type 1) is an integer \(n \) that can be factored as \(n = ab \) with \(a, b \) close to \(\sqrt{n} \). For example, \(9999 = 99 \times 101 \). We call an integer \(n \) an almost square of type 2 if it has two different such representations, \(n = a_1b_1 = a_2b_2 \) where \(a_1, b_1, a_2, b_2 \) are close to \(\sqrt{n} \). For example \(99990000 = 9999 \times 10000 = 9900 \times 10100 \). Of course, this depends on what we mean by close. More precisely, for \(0 \leq \theta \leq 1/2 \) and \(C > 0 \),

Definition 1 An integer \(n \) is a \((\theta, C)\)-almost square of type 1 if \(n = ab \) for some integers \(a < b \) in the interval \([n^{1/2} - Cn^\theta, n^{1/2} + Cn^\theta]\).

Definition 2 An integer \(n \) is a \((\theta, C)\)-almost square of type 2 if \(n = a_1b_1 = a_2b_2 \) for some integers \(a_1 < a_2 \leq b_2 < b_1 \) in the interval \([n^{1/2} - Cn^\theta, n^{1/2} + Cn^\theta]\).

In a series of papers [1], [2], [3], [4], the author was interested in finding almost squares of either types in short intervals. In particular, given \(0 \leq \theta \leq \frac{1}{2} \), we want to find “admissible” exponent \(\phi_i \geq 0 \) (as small as possible) such that, for some constants \(C_{\theta,i}, D_{\theta,i} > 0 \), the interval \([x - D_{\theta,i}x^{\phi_i}, x + D_{\theta,i}x^{\phi_i}]\) contains a \((\theta, C_{\theta,i})\)-almost square of type \(i \) \((i = 1, 2)\) for all sufficiently large \(x \). These lead to the following

Definition 3 We let \(f(\theta) := \inf \phi_1 \) and \(g(\theta) := \inf \phi_2 \), where the infima are taken over all the “admissible” \(\phi_i \) \((i = 1, 2)\) respectively.
Clearly \(f \) and \(g \) are non-increasing functions of \(\theta \). It was conjectured (and partially verified) that

Conjecture 4 For \(0 \leq \theta \leq \frac{1}{2} \),

\[
f(\theta) = \begin{cases}
\frac{1}{2}, & \text{if } 0 \leq \theta < \frac{1}{4}, \\
\frac{1}{2} - \theta, & \text{if } \frac{1}{4} \leq \theta \leq \frac{1}{2};
\end{cases}
\]

and

\[
g(\theta) = \begin{cases}
does not exist, & \text{if } 0 \leq \theta < \frac{1}{4}, \\
1 - 2\theta, & \text{if } \frac{1}{4} \leq \theta \leq \frac{1}{2}.
\end{cases}
\]

In [3], it was proved that

Theorem 5 For \(\frac{1}{4} \leq \theta \leq \frac{1}{2} \),

\[
g(\theta) \leq \begin{cases}
\frac{5}{8}, & \text{if } \frac{1}{4} \leq \theta \leq \frac{5}{16}, \\
\frac{17}{32}, & \text{if } \frac{5}{16} \leq \theta \leq \frac{743}{2306}, \\
\frac{1}{2}, & \text{if } \frac{743}{2306} < \theta \leq \frac{1}{2}.
\end{cases}
\]

The purpose of this paper is to improve the \(\frac{1}{2} \) upper bound for \(g(\theta) \) in certain range of \(\theta \), namely

Theorem 6 For \(\frac{1}{4} \leq \theta \leq \frac{1}{2} \), we have \(g(\theta) \leq 1 - \frac{3\theta}{7} \).

Combining the above two theorems, we have the following picture:
The thin downward sloping line is the conjectural lower bound $1 - 2\theta$ while the thick line segments above are the upper bounds from Theorems 5 and 6.

Furthermore, there are some connections between almost squares of type 1 and almost squares of type 2.

Theorem 7 If Conjecture 4 is true for $f(\theta)$ when $\frac{1}{4} \leq \theta \leq \frac{1}{2}$, then

$$g(\theta) \leq \frac{3}{2} - 3\theta$$

for $\frac{1}{3} \leq \theta \leq \frac{1}{2}$.

Notation. Both $f(x) = O(g(x))$ and $f(x) \ll g(x)$ mean that $|f(x)| \leq Cg(x)$ for some constant $C > 0$.

2. Unconditional Result: Theorem 6

Proof. We shall use the fact: for any real number $x \geq 1$, there exists a perfect square a^2 such that $a^2 \leq x < (a + 1)^2$. Hence $|x - a^2| \ll \sqrt{x}$.

Given $x \geq 1$ sufficiently large. The almost square of type 2 close to x we have in mind has the form

$$n = (G^2 - 1)(H^2 - h^2) = a_1b_1 = a_2b_2,$$

where $\{a_1, b_1\} = \{(G - 1)(H - h), (G + 1)(H + h)\}$ and $\{a_2, b_2\} = \{(G - 1)(H + h), (G + 1)(H - h)\}$.

Let $0 < \lambda < \frac{1}{4}$. We choose $G = [x^{1/4-\lambda}]$.

First, we approximate $\frac{x}{G^2 - 1}$ by H^2 where $H = \lfloor \frac{x}{G^2 - 1} \rfloor + 1$. Then $0 < H^2 - \frac{x}{G^2 - 1} \ll H$. One can check that

$$GH = G\left[\sqrt{\frac{x}{G^2 - 1}} + 1\right] = x^{1/2}\left(1 + O\left(\frac{1}{G^2}\right)\right) + O(G) = x^{1/2} + O(x^{2\lambda}) + O(x^{1/4-\lambda}).$$

Next, we approximate $H^2 - \frac{x}{G^2 - 1}$ by h^2 for some $0 < h \ll H^{1/2} \ll x^{1/8+\lambda/2}$. We can get within a distance $H^2 - \frac{x}{G^2 - 1} - h^2 \ll H^{1/2} \ll x^{1/8+\lambda/2}$. Therefore

$$|x - (G^2 - 1)(H^2 - h^2)| \leq \left|\frac{x}{G^2 - 1} - (H^2 - h^2)\right|G^2 \ll G^2x^{1/8+\lambda/2} \ll x^{5/8-3\lambda/2}. $$
The number \(n = (G^2 - 1)(H^2 - h^2) = (G - 1)(G + 1)(H - h)(H + h) \). Notice that
\[
(G - 1)(H - h) = GH - H - Gh + h
\]
\[
= x^{1/2} + O(x^{2\lambda}) + O(x^{1/4-\lambda})
\]
\[
+ O(x^{1/4+\lambda}) + O(x^{3/8-\lambda/2}) + O(x^{1/8+\lambda/2})
\]
\[
= x^{1/2} + O(x^{1/4+\lambda}) + O(x^{3/8-\lambda/2}).
\]

One can check that the same asymptotic holds for \((G - 1)(H + h), (G + 1)(H - h)\)
and \((G + 1)(H + h)\). When \(\lambda \geq \frac{1}{12} \), the first error term dominates. Thus, we just have found a \((\frac{1}{4} + \lambda, C)\)-almost square of type 2 within a distance \(O(x^{5/8-3\lambda/2})\) from \(x\) for some \(C > 0\).

Set \(\theta = \frac{1}{4} + \lambda \). The condition \(\frac{1}{12} \leq \lambda < \frac{1}{4} \) becomes \(\frac{1}{2} \leq \theta < \frac{3}{4} \). Meanwhile \(\frac{5}{8} - \frac{11\lambda}{2} = 1 - \frac{3\theta}{2} \). Therefore, for any \(\frac{1}{4} \leq \theta < \frac{1}{2} \), there exists a \((\theta, C)\)-almost square of type 2 within a distance \(O(x^{1-3\theta/2})\) from \(x\). So \(g(\theta) \leq 1 - \frac{2\theta}{3} \) when \(\frac{1}{4} \leq \theta < \frac{1}{2} \).

When \(\lambda = \frac{1}{4} \) (i.e. \(\theta = \frac{1}{2} \)), one simply uses \(G = 2 \) and the above argument works in the same way to give \(g(\frac{1}{2}) \leq \frac{1}{4} \).

\[\square\]

3. Connection to Almost Squares of Type 1: Theorem 7

Proof. In the previous section, we used an elementary method to approximate \(\frac{x}{G^2 - 1} \)
by \((H - h)(H + h)\), a \((\frac{1}{4}, C)\)-almost square of type 1, since \(h \ll H^{1/2} \ll \sqrt{\frac{x}{G^2 - 1}} \).
So one should expect to do better using \((\phi, C)\)-almost square of type 1 for some \(\frac{1}{4} \leq \phi \leq \frac{1}{2} \).

Again we choose \(G = \lfloor x^{1/4-\lambda} \rfloor \) and let \(H = \sqrt{\frac{x}{G^2 - 1}} \). By Conjecture 4 on \(f(\theta) \),
we can find a \((\phi, C)\)-almost square of type 1, say \(ab \), such that \(H - CH^{2\phi} \leq a \leq \phi \leq H + CH^{2\phi} \) and
\[
\left| \frac{x}{G^2 - 1} - ab \right| \ll \left(\frac{x}{G^2 - 1} \right)^{1/2-\phi+\epsilon} \ll x^{1/4-\phi/2+\lambda-2\lambda\phi+\epsilon}
\]
for \(x \) sufficiently large. Hence
\[
|x - (G - 1)(G + 1)ab| \ll x^{3/4-\lambda-\phi/2-2\lambda\phi+\epsilon}.
\]

(1)

Similar to the previous section, one has
\[
(G - 1)a = (G - 1)(H + O(H^{2\phi})) = GH - H + O(GH^{2\phi})
\]
\[
= x^{1/2} + O(x^{1/4+\lambda}) + O(x^{1/4-\lambda+\phi/2+2\lambda\phi}).
\]
The same is true for \((G - 1)b, (G + 1)a\) and \((G + 1)b\). One can check that \(\frac{1}{4} + \lambda \geq \frac{1}{4} - \lambda + \frac{\phi}{2} + 2\lambda\phi\) if and only if \(\lambda \geq \frac{2}{4 - 4\phi}\).

Let \(\theta = \frac{1}{4} + \lambda\) and \(\lambda = \frac{\phi}{4 - 4\phi}\). Then the exponent in (1) satisfies \(\frac{3}{2} - \lambda - \frac{\phi}{2} - 2\lambda\phi = 1 - \theta(1 + 2\phi)\). Therefore, for any \(\frac{1}{4} + \frac{\phi}{4 - 4\phi} \leq \theta \leq \frac{1}{2}\), there exists a \((\theta, C')\)-almost square of type 2 within a distance of \(O(x^{1 - \theta(1 + 2\phi) + \epsilon})\) from \(x\) for some \(C' > 0\).

Given \(\frac{1}{3} \leq \theta \leq \frac{1}{2}\), the bigger the \(\phi\), the better the above result. Since \(\frac{\phi}{4 - 4\phi}\) is an increasing function of \(\phi\), the biggest \(\phi\) we can use is when \(\frac{1}{3} + \frac{\phi}{4 - 4\phi} = \theta\). This gives \(\phi = 1 - \frac{1}{3\theta} \leq \frac{1}{2}\) as \(\theta \leq \frac{1}{2}\). Using this value of \(\phi\), we have a \((\theta, C')\)-almost square of type 2 within a distance of \(O(x^{3/2 - 3\theta + \epsilon})\) from \(x\). This proves Theorem 7 as \(\epsilon\) can be arbitrarily small.

Remark. The exponent \(\frac{3}{2} - 3\theta \to 0\) as \(\theta \to \frac{1}{2}\). However \(\frac{3}{2} - 3\theta\) is always greater than the conjectural value \(1 - 2\theta\) for \(g(\theta)\) which is no surprise as part of the almost square has the special form \(G^2 - 1\). It would be interesting to see how one could incorporate the extra degree of freedom, namely \(G^2 - g^2\) for some \(g\), for further improvements.

References

