DISTRIBUTION AND ADDITIVE PROPERTIES OF SEQUENCES WITH TERMS INVOLVING SUMSETS IN PRIME FIELDS

Victor Cuauhtemoc García 1
Departamento de Ciencias Básicas e Ingeniería, Universidad Autónoma
Metropolitana–Azcapotzalco, México
vc.garci@gmail.com

Received: 9/22/11, Revised: 4/4/12, Accepted: 7/4/12, Published: 7/13/12

Abstract
Let \(p \) be a large prime number, and \(U, V \) be nonempty subsets of the set of residue classes modulo \(p \). In this paper we obtain results on the distribution and the additive properties of sequences involving terms of the form \(u + v \), where \(u \in U \) and \(v \in V \). For instance, we prove that \((A + A)(B + Y) + (C + C)(D + W) = F_p \), for any subsets \(A, B, C, D, Y, W \) of \(F_p^* \) with \(|A||C|, \sqrt{|B||D||Y||W|} \geq 10p \). This extends a previous result of Garaev and the author.

1. Introduction
In what follows, \(p \) denotes a large prime number and \(F_p^* \) is the multiplicative group of \(F_p \). The notation \(f \ll g \) is equivalent to \(f = O(g) \) and means that \(|f(x)| \leq Cg(x) \), as \(x \to \infty \), for some absolute constant \(C > 0 \). Given \(A, B \) nonempty subsets of \(F_p \) and \(k \) a positive integer we shall use the standard notation

\[
A + B = \{ a + b \pmod p : a \in A, b \in B \}, \\
AB = \{ ab \pmod p : a \in A, b \in B \}, \\
kA = \{ a_1 + \ldots + a_k \pmod p : a_1, \ldots, a_k \in A \}.
\]

Using combinatorial arguments, Glibichuk [2] established that if \(A, B \) are subsets with \(|A||B| \geq 2p \), then \(8AB = F_p \). We note that the proof of [2, Theorem 1] also implies that \((A + A)(B + B) + (A + A)(B + B) = F_p \).

This result can be interpreted as the assertion that for any arbitrary pair of small sets \(A, B \), with \(|A||B| \geq 2p \), every residue class modulo \(p \) can be written as a small number of combinations of sums and products of their elements.

We note that the condition \(|A||B| \geq 2p \), is sharp apart from the constant 2. Indeed, let \(\Delta = \Delta(p) \) be any increasing function with \(\Delta \to \infty \), as \(p \to \infty \), and

1The author was supported by the Project UAM-A 2232508.
set $A = B = \{1, 2, 3, \ldots, \lfloor p/\Delta \rfloor \}$. We have that $AB \subseteq \{1, 2, 3, \ldots, \lfloor p/\Delta \rfloor + 1 \}$ and clearly there is no fixed integer $k \geq 2$ such that for every prime number $p \geq p_0$, the equality $kAB = \mathbb{F}_p$ holds: See the discussion given in [3].

It is natural to ask if it is possible to obtain similar results combining more than a pair of different sets. In [1, Theorem 4] it was proved that if A, B, C, D are arbitrary subsets of \mathbb{F}_p^* with

$$|A||C|, |B||D| > (2 + \sqrt{2})p,$$

then

$$(A + A)(B + B) + (C + C)(D + D) = \mathbb{F}_p.$$

This result directly implies that $4AB + 4CD = \mathbb{F}_p$. Furthermore, from the work by Hart and Iosevich [4], it follows that for any $2k$ subsets $A_i, B_i, 1 \leq i \leq k$, satisfying

$$\prod_{i=1}^{k} |A_i||B_i| \geq Cp^{k+1},$$

we have $\mathbb{F}_p^* \subseteq A_1B_1 + \ldots + A_kB_k$, where $C = C(k)$ is some large constant. In particular

$$\mathbb{F}_p^* \subseteq A_1B_1 + \ldots + A_8B_8,$$

whenever

$$\prod_{i=1}^{8} |A_i||B_i| \gg p^9.$$

This result involves 16 different sets at the cost of an optimal order.

With these facts in mind, we expect that for arbitrary subsets $A_i, B_i, C_i, D_i; i = 1, 2$, of \mathbb{F}_p^* with

$$\prod_{i=1}^{2} |A_i||B_i||C_i||D_i| \gg p^4,$$

the following expression holds:

$$(A_1 + A_2)(B_1 + B_2) + (C_1 + C_2)(D_1 + D_2) = \mathbb{F}_p.$$

We also notice that the most interesting case takes place if the zero class is removed for each set. Otherwise, it is possible to construct exceptional examples; for instance, $A_1 = A_2 = C_1 = C_2 = \mathbb{F}_p, \ B_1 = B_2 = D_1 = D_2 = \{0 \}$ gives

$$\prod_{i=1}^{2} |A_i||B_i||C_i||D_i| = p^4$$

and

$$(A_1 + A_2)(B_1 + B_2) + (C_1 + C_2)(D_1 + D_2) = \{0 \}.$$
Using the combinatorial point of view, and methods of estimation of trigonometric sums we establish (2) for some important cases. We obtain that for any subsets \(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{Y}, \mathcal{W} \) of \(\mathbb{F}_p^* \) satisfying
\[
|\mathcal{A}| |\mathcal{C}| > 10p, \quad |\mathcal{B}| |\mathcal{D}| |\mathcal{Y}| |\mathcal{W}| > 100p^2,
\]
the following equality holds: \((\mathcal{A} + \mathcal{A})(\mathcal{B} + \mathcal{Y}) + (\mathcal{C} + \mathcal{C})(\mathcal{D} + \mathcal{Z}) = \mathbb{F}_p \). This extends the already mentioned result of [1]. As a direct consequence we have
\[
2\mathcal{A}\mathcal{B} + 2\mathcal{A}\mathcal{Y} + 2\mathcal{C}\mathcal{D} + 2\mathcal{C}\mathcal{Y} = \mathbb{F}_p.
\]
Moreover, we prove that \(\mathcal{A}_1\mathcal{B}_1 + \ldots + \mathcal{A}_8\mathcal{B}_8 = \mathbb{F}_p \), assuming that \(\mathcal{A}_i, \mathcal{B}_i, 1 \leq i \leq 8 \), are subsets of \(\mathbb{F}_p^* \) with
\[
\prod_{i=1}^{4} |\mathcal{A}_i| \prod_{i=5}^{8} |\mathcal{A}_i| \prod_{i=1}^{4} |\mathcal{B}_i| \prod_{i=5}^{8} |\mathcal{B}_i| \geq 100p^2; \quad (3)
\]
and \(\mathcal{A}_1 = \mathcal{A}_2, \mathcal{A}_3 = \mathcal{A}_4, \mathcal{A}_5 = \mathcal{A}_6, \mathcal{A}_7 = \mathcal{A}_8 \).

This result sharpen the one of Hart and Iosevich for some cases. We remove one factor \(p \) in the right side of (1) using 12 different sets subject to (3).

2. Formulation of the Results

Throughout the paper, given \(u \in \mathbb{F}_p^* \), by \(u^* \equiv 1 \pmod{p} \) we denote the residue class such that \(uu^* \equiv 1 \pmod{p} \). Also, for \(\mathcal{U}, \mathcal{U}', \mathcal{V}, \mathcal{V}' \), nonempty subsets of \(\mathbb{F}_p^* \), we denote by \((\mathcal{U} + \mathcal{U}')(\mathcal{V} + \mathcal{V}')^* \) the subset of \(\mathbb{F}_p^* \) with elements of the form
\[
(u + v)(u' + v')^* \quad (\pmod{p}),
\]
where
\[
\begin{align*}
u & \in \mathcal{U}, \quad u' \in \mathcal{U}', \quad v \in \mathcal{V}, \quad v' \in \mathcal{V}', \\
u + v & \equiv 0 \pmod{p}, \quad u' + v' \not\equiv 0 \pmod{p}.
\end{align*}
\]

Theorem 1. Let \(\delta \) be a real number satisfying \(\delta > 1 \) and \(\mathcal{B}, \mathcal{Y}, \mathcal{D}, \mathcal{W} \), subsets of \(\mathbb{F}_p^* \) with \(|\mathcal{B}| |\mathcal{Y}| |\mathcal{D}| |\mathcal{W}| \geq \delta p^2 \). Then
\[
|(\mathcal{B} + \mathcal{Y})(\mathcal{D} + \mathcal{W})^*| = (p - 1) + \frac{\theta p^2}{\left(1 - \frac{1}{\sqrt{\delta}}\right) \sqrt{|\mathcal{B}| |\mathcal{Y}| |\mathcal{D}| |\mathcal{W}|}},
\]
where \(\theta \) is a real number satisfying \(|\theta| < 1 \).
Combining Theorem 1 with some arguments used in [1] one can obtain the following result.

Theorem 2. Let A, B, C, D, Y, W be subsets of \mathbb{F}_p^* such that
\[
|A||C| \geq 10p, \quad |B||Y||D||W| \geq 100p^2.
\]
Then
\[
(A + A)(B + Y) + (C + C)(D + W) = \mathbb{F}_p. \tag{4}
\]
We immediately derive $2AB + 2AY + 2CD + 2CY = \mathbb{F}_p$. However, we obtain a slight improvement on the number of different sets.

Theorem 3. Let A_i, B_i, $1 \leq i \leq 8$, be subsets of \mathbb{F}_p^* with
\[
\prod_{i=1}^{4} |A_i|, \prod_{i=5}^{8} |A_i| \geq 100p^2; \quad \prod_{i=1}^{4} |B_i|, \prod_{i=5}^{8} |B_i| \geq 100p^2;
\]
\[A_1 = A_2, \quad A_3 = A_4, \quad A_5 = A_6, \quad A_7 = A_8.\]
Then $A_1B_1 + \ldots + A_8B_8 = \mathbb{F}_p$.

We note that from Theorem 1 it follows that if $|U||U'|||Y'|||V'| \geq \Delta p^2$, with Δ an arbitrary strictly increasing function such that $\Delta = \Delta(p) \to \infty$ as $p \to \infty$, then
\[
|(U + Y)(U' + V')^*| = p \left(1 + O(1/\sqrt{\Delta})\right).
\]
In particular, almost all residue classes modulo p can be written as
\[(u + v)(u' + v')^* \pmod{p},\]
for some $u \in U, u' \in U', v \in V, v' \in V'$.

Within this spirit, combining Theorem 1 with the pigeon–hole principle we have that $(A + X)(B + Y)^* + (C + Z)(D + W)^* = \mathbb{F}_p$, if A, B, C, D, X, Y, Z, W are subsets of \mathbb{F}_p^* satisfying $|A||X||C||Z| \geq 100p^2$ and $|B||Y||D||W| \geq 100p^2$.

3. Proof of Theorem 1

First, we establish the following lemma.

Lemma 4. Let $B, Y, D, W \subseteq \mathbb{F}_p$ be nonempty. If $\max\{|B|, |Y|\} \max\{|D|, |W|\} > p$, then, for the set $\mathcal{H} = (B + Y)^*(D + W)$, the following asymptotic formula holds:
\[
|\mathcal{H}| = (p - 1) + \frac{\theta p^2}{\left(\max\{|B|, |Y|\} \max\{|D|, |W|\}\right) \sqrt{|B||Y||D||W|}}, \tag{5}
\]
where θ is some real number with $|\theta| \leq 1$.
Proof. We define \(\mathcal{R} := \mathbb{F}^*_p \setminus \mathcal{H} \). In view of the equality \(|\mathcal{R}| = (p - 1) - |\mathcal{H}| \), it is sufficient to establish the inequality

\[
|\mathcal{R}| \leq \frac{p^2}{\sqrt{|\mathcal{B}||\mathcal{V}||\mathcal{D}||\mathcal{W}|}} \left(1 - \frac{p}{\max(|\mathcal{B}|,|\mathcal{V}|) \max(|\mathcal{D}|,|\mathcal{W}|)} \right).
\]

For any \(r \in \mathcal{R} \) the congruence

\[
d + w \equiv r(b + y) \pmod{p}
\]

does not have solutions with \(b, y, d, w \) subject to

\[
b + y \not\equiv 0 \pmod{p}, \quad d + w \not\equiv 0 \pmod{p}.
\]

Therefore, since \(b + y \equiv 0 \pmod{p} \) implies that \(d + w \equiv 0 \pmod{p} \), for any \(r \in \mathcal{R} \), the congruence (6) has at most \(\min\{|\mathcal{B}|,|\mathcal{V}|\} \min\{|\mathcal{D}|,|\mathcal{W}|\} \) solutions subject to

\[
b \in \mathcal{B}, \quad y \in \mathcal{V}, \quad d \in \mathcal{D}, \quad w \in \mathcal{W}.
\]

Expressing the number of solutions of (6), with \(r \in \mathcal{R} \), via trigonometric sums we have

\[
\frac{1}{p} \sum_{t=0}^{p-1} \sum_{r \in \mathcal{R}} \sum_{b \in \mathcal{B}} \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} e^{2\pi i \frac{r}{p}(d+w)-r(b+y)} \leq |\mathcal{R}| \min\{|\mathcal{B}|,|\mathcal{V}|\} \min\{|\mathcal{D}|,|\mathcal{W}|\}.
\]

Picking up the term corresponding to \(t = 0 \), we obtain

\[
|\mathcal{R}||\mathcal{B}||\mathcal{V}||\mathcal{D}||\mathcal{W}| \leq p|\mathcal{R}| \min\{|\mathcal{B}|,|\mathcal{V}|\} \min\{|\mathcal{D}|,|\mathcal{W}|\} + S,
\]

where

\[
S = S(\mathcal{R}, \mathcal{B}, \mathcal{V}, \mathcal{D}, \mathcal{W}) := \sum_{t=1}^{p-1} \left| \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} e^{2\pi i \frac{t}{p}(d+w)} \sum_{r \in \mathcal{R}} \sum_{b \in \mathcal{B}} \sum_{y \in \mathcal{V}} e^{2\pi i \frac{r}{p}((b+y))} \right|.
\]

Extending the range of the summation over \(r \) to \(1 \leq r \leq p - 1 \), we obtain

\[
S \leq \sum_{t=1}^{p-1} \left| \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} e^{2\pi i \frac{t}{p}(d+w)} \sum_{r=1}^{p-1} \left| \sum_{b \in \mathcal{B}} \sum_{y \in \mathcal{V}} e^{2\pi i \frac{r}{p}((b+y))} \right| \right| \leq \left(\sum_{t=1}^{p-1} \left| \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} e^{2\pi i \frac{t}{p}(d+w)} \right| \right) \left(\sum_{r=1}^{p-1} \left| \sum_{b \in \mathcal{B}} \sum_{y \in \mathcal{V}} e^{2\pi i \frac{r}{p}((b+y))} \right| \right).
\]
Applying the Cauchy-Schwarz-Bunyakovskii inequality,

\[
S \leq \left\{ \sum_{t=0}^{p-1} \left| \sum_{d \in \mathcal{D}} e^{2\pi i \frac{td}{p}} \right|^2 \sum_{\pi=0}^{p-1} \left| \sum_{\nu \in \mathcal{W}} e^{2\pi i \frac{\nu}{p}} \right|^2 \right\}^{\frac{1}{2}} \left\{ \sum_{\nu=0}^{p-1} \left| \sum_{h \in \mathcal{B}} e^{2\pi i \frac{\nu h}{p}} \right|^2 \sum_{y \in \mathcal{Y}} \left| \sum_{h=0}^{p-1} e^{2\pi i \frac{h y}{p}} \right|^2 \right\}^{\frac{1}{2}} \leq p^2 \sqrt{|\mathcal{B}\mathcal{Y}||\mathcal{D}\mathcal{W}|}.
\]

Therefore, combining this with estimation (7),

\[
|R|\sqrt{|\mathcal{B}\mathcal{Y}||\mathcal{D}\mathcal{W}|} \left(1 - \frac{p}{\max\{|\mathcal{B}|,|\mathcal{Y}|\}\max\{|\mathcal{D}|,|\mathcal{W}|\}} \right) \leq p^2;
\]

Lemma 4 follows.

Now we turn directly to the proof of Theorem 1. From the hypothesis we obtain

\[(\max\{|\mathcal{B}|,|\mathcal{Y}|\}\max\{|\mathcal{D}|,|\mathcal{W}|\})^2 \geq |\mathcal{B}\mathcal{Y}||\mathcal{D}\mathcal{W}| \geq \delta p^2,
\]

which implies

\[
\frac{1}{\left(1 - \frac{p}{\max\{|\mathcal{B}|,|\mathcal{Y}|\}\max\{|\mathcal{D}|,|\mathcal{W}|\}} \right) \leq \frac{1}{\left(1 - \frac{1}{\sqrt{\delta}} \right)}.
\]

Theorem 1 follows from this relation applied to (5).

4. Proof of Theorem 2

To prove Theorem 2, denote by \(J\) the number of solutions of the congruence

\[a_1 + h c_1 \equiv a_2 + h c_2 \pmod p,
\]

with

\[a_1, a_2 \in \mathcal{A}, \quad c_1, c_2 \in \mathcal{C}, \quad h \in \mathcal{H}.
\]

If \(a_1 \equiv a_2 \pmod p\), then \(c_1 \equiv c_2 \pmod p\) and \(h\) can be an arbitrary element of \(\mathcal{H}\). Otherwise, for given \(a_1, a_2, c_1, c_2\) with \(a_1 \not\equiv a_2 \pmod p\) we have at most one possible value for \(h\). Therefore, \(J \leq |\mathcal{H}| |\mathcal{A}| |\mathcal{C}| + |\mathcal{A}|^2 |\mathcal{C}|^2\). Thus, there exists an element \(h_0 \in \mathcal{H}\) such that \(J_0\), the number of solutions of the congruence

\[a_1 + h_0 c_1 \equiv a_2 + h_0 c_2 \pmod p; \quad a_1, a_2 \in \mathcal{A}, \ c_1, c_2 \in \mathcal{C},
\]

satisfies

\[J_0 \leq |\mathcal{A}| |\mathcal{C}| + \frac{|\mathcal{A}|^2 |\mathcal{C}|^2}{|\mathcal{H}|}.
\]
By the Cauchy-Schwarz-Bunyakovskii inequality it follows that
\[
\#\{A + h_0 C\} \geq \frac{|A|^2|C|^2}{|H|^2}.
\] (9)

Since \(h_0\) is a fixed element of \(H\), there exist fixed elements \(b_0 \in B, y_0 \in Y, d_0 \in D, w_0 \in W\) such that
\[
h_0 \equiv (b_0 + y_0)(d_0 + w_0) \pmod{p}.
\]

Multiplying the set \(\{A + h_0 C\}\) by \((b_0 + y_0)\), it is clear that
\[
\#\{(b_0 + y_0)A + (d_0 + w_0)C\} = \#\{A + h_0 C\}.
\] (10)

We claim that
\[
\#\{(b_0 + y_0)A + (d_0 + w_0)C\} > p/2.
\] (11)

Indeed, by combining the relation (10) with the equations (8) and (9) we have
\[
\#\{(b_0 + y_0)A + (d_0 + w_0)C\} \geq \frac{|A||C|}{1 + |A||C|/|H|}.
\]

Thus, it will suffice to show that
\[
\frac{|A||C|}{1 + |A||C|/|H|} > p/2,
\]
or equivalently
\[
|A||C| \left(2 - \frac{p}{|H|}\right) > p.
\]

Next, applying Theorem 1: \(|A||C|, \sqrt{\|B\||Y||D||W|} \geq 10p\), and the value set
\[
|H| = (p - 1) + \frac{\theta p^2}{10 \sqrt{|B||Y||D||W|}} \geq \frac{3}{5} p.
\]

we get
\[
|A||C| \left(2 - \frac{p}{|H|}\right) > 10p \left(2 - \frac{p}{3p/5}\right) \geq \frac{10}{3} p.
\]

Therefore Eq. (11) holds.

Finally, let \(\lambda\) be any integer. It is clear that
\[
\#\{\lambda - (b_0 + y_0)A - (d_0 + w_0)C\} > p/2.
\]

By the pigeonhole principle there exist fixed elements \(a', a'' \in A, c', c'' \in C\), such that
\[
(a' + a'')(b_0 + y_0) + (c' + c'')(d_0 + w_0) \equiv \lambda \pmod{p}.
\]

5. Proof of Theorem 3

Following the same arguments as Theorem 2, it follows that there exist fixed elements

\[b_i' \in B_i, \quad 1 \leq i \leq 8, \]

such that

\[\#\{ (b_1' + b_2'A_1) + (b_3' + b_4')A_3 \} > p/2, \quad \#\{ (b_5' + b_6')A_5 + (b_7' + b_8')A_7 \} > p/2. \]

Let \(\lambda \) be any integer. It is clear that

\[\#\{ \lambda - (b_5' + b_6')A_5 - (b_7' + b_8')A_7 \} > p/2. \]

Hence, by the pigeon-hole principle there exist elements

\[a_1' \in A_1, \quad a_3' \in A_3, \quad a_5' \in A_5, \quad a_7' \in A_7, \]

such that

\[a_1'(b_1' + b_2') + a_3'(b_3' + b_4') \equiv \lambda - a_5'(b_5' + b_6') - a_7'(b_7' + b_8') \pmod{p}, \]

thus

\[\sum_{i=1}^{8} a_i'b_i' \equiv \lambda \pmod{p}, \]

with

\[a_1' = a_2', \quad a_3' = a_4', \quad a_5' = a_6', \quad a_7' = a_8'. \]

References

[1] M. Z. Garaev and V. C. Garcia, ‘The equation \(x_1x_2 = x_3x_4 + \lambda \) in fields of prime order and applications,’ *J. Number Theory*, **128** (2008), no. 9, 2520–2537.

