A REVERSE ORDER PROPERTY OF CORRELATION MEASURES
OF THE SUM-OF-DIGITS FUNCTION

Johannes F. Morgenbesser
Universität Wien, Fakultät für Mathematik, Wien, Austria
johannes.morgenbesser@univie.ac.at

Lukas Spiegelhofer
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,
Wien, Austria
lukas.spiegelhofer@tuwien.ac.at

Received: 1/9/12, Accepted: 7/7/12, Published: 9/3/12

Abstract
Let s_q be the sum-of-digits function in base q, $q \geq 2$. If t is a positive integer, we denote by t^R the unique integer that is obtained from t by reversing the order of the digits of the proper representation of t in base q. In this work we prove that for all $\alpha \in \mathbb{R}$ and all positive integers t the correlation measure

$$\gamma(\alpha, t) = \lim_{x \to \infty} \frac{1}{x} \sum_{n < x} e^{2\pi i \alpha (s_q(n+t) - s_q(n))}$$

satisfies $\gamma(\alpha, t) = \gamma(\alpha, t^R)$. From this we deduce that for all integers d the sets

$$\{n \in \mathbb{N} : s_q(n+t) - s_q(n) = d\}$$

and

$$\{n \in \mathbb{N} : s_q(n+t^R) - s_q(n) = d\}$$

de the same asymptotic density. The proof involves methods coming from the study of q-additive functions, linear algebra, and analytic number theory.

1. Introduction and Main Results
Throughout this work, q is a fixed positive integer ≥ 2. For a real number x, the expression $e(x)$ denotes $e^{2\pi i x}$. Every integer $n > 0$ has a unique representation in base q of the form

$$n = \sum_{j=0}^{\nu} \varepsilon_j(n)q^j, \quad \varepsilon_j(n) \in \{0, \ldots, q-1\},$$

with $\varepsilon_\nu(n) \neq 0$. We set $\varepsilon_j(n) = 0$ for $j > \nu$. The sum-of-digits function $s_q(n)$ in base q is defined by $s_q(n) = \sum_{j \geq 0} \varepsilon_j(n)$. If $\ell \geq \nu$, we write $n = (\varepsilon_{\ell-1}(n) \ldots \varepsilon_0(n))_q$.

1. The author was supported by the Austrian Science Foundation FWF, grant P21209.
2. The author was supported by the Austrian Science Foundation FWF, grant S9604, which is part of the National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.

In the case that \(\ell = \nu \) (that is, \(\varepsilon_{\ell}(n) \neq 0 \)), this is called the proper representation of \(n \). If \(t = (\varepsilon_{\nu}(t)\varepsilon_{\nu-1}(t) \ldots \varepsilon_0(t))_q \) with \(\varepsilon_{\nu}(t) \neq 0 \), we set

\[
t^R = (\varepsilon_0(t) \ldots \varepsilon_{\nu}(t))_q,
\]

that is, \(t^R \) is obtained from \(t \) by reversing the order of the digits in base \(q \). Moreover, we set \(0^R = 0 \). Note that palindromes (in base \(q \)) are exactly those integers that satisfy \(t = t^R \). Note furthermore that the function \(t \mapsto t^R \) restricted to positive integers not congruent to 0 modulo \(q \) is bijective. In particular, if \(t = q^k \cdot \hat{t} \) with \((t, q) = 1 \) and \(k \geq 0 \), then we have \(t^{RR} = \hat{t} \). For \(t \geq 0 \) we set

\[
\gamma(\alpha, t) = \lim_{x \to \infty} \frac{1}{x} \sum_{n < x} e(\alpha (s_q(n + t) - s_q(n))).
\]

In the case that \(\alpha = 1/2 \) and \(q = 2 \) it was proven by Mahler [7] that the limits actually exist and that \(\gamma(1/2, t) \neq 0 \) for infinitely many \(t \). For general \(\alpha \) and \(q \geq 2 \) it follows from [1] that the limits exist for all \(t \geq 0 \). Interestingly, \(\gamma(1/2, t) \) is equal to the \(t \)-th Fourier coefficient of the correlation measure associated to the Thue-Morse dynamical system (see [6]). Our main result deals with these correlation measures for an integer \(t \) and its associated integer \(t^R \). Even though there seems to be no simple relation between \(s_q(n + t) \) and \(s_q(n + t^R) \), we have the following result:

Theorem 1. Let \(q \geq 2, \alpha \in \mathbb{R} \) and \(t \geq 0 \). Then we have \(\gamma(\alpha, t) = \gamma(\alpha, t^R) \).

This theorem implies that the set of positive integers \(n \) such that \(s_q(n + t) - s_q(n) \) is a fixed integer \(d \) satisfies a similar property. For \(d \in \mathbb{Z} \) and \(t \geq 0 \) let \(\delta(d, t) \) be the asymptotic density of the set \(\{ n \in \mathbb{N} : s_q(n + t) - s_q(n) = d \} \), that is,

\[
\delta(d, t) = \lim_{x \to \infty} \frac{1}{x} \# \{ n < x : s_q(n + t) - s_q(n) = d \}.
\]

(The existence of the limit follows from [1, Lemma 1], which tells us that the set \(\{ n \in \mathbb{N} : s_q(n + t) - s_q(n) = d \} \) is a union of arithmetic progressions.)

Corollary 2. Let \(q \geq 2, d \in \mathbb{Z} \) and \(t \geq 0 \). Then we have \(\delta(d, t) = \delta(d, t^R) \).

Our research was motivated by a question of Thomas W. Cusick [2]: Let \(c_t \) be defined for \(t \geq 0 \) by

\[
c_t = \lim_{x \to \infty} \frac{1}{x} \# \{ n < x : s_q(n + t) \geq s_q(n) \}.
\]

He asked whether it is true that \(c_t > 1/2 \) for all integers \(t \geq 0 \). This question arose while he was working on a combinatorial problem proposed by Tu and Deng [8] that is strongly related to Boolean functions with optimal cryptographic properties. In [3] some cases of this conjecture have been proved, and there are several other recent papers dealing with this subject, see for example [5, 4]). Although we could not answer Cusick’s original question, Theorem 1 implies the following interesting result:
Corollary 3. Let $q \geq 2$ and $t \geq 0$. Then we have $c_t = c_{tu}$.

2. Proof of Theorem 1

Bézineau [1, Section II.6] showed that the quantities $\gamma(\alpha, t)$ satisfy the following recurrence relation: We have $\gamma(\alpha, 0) = 1$ and

$$
\gamma(\alpha, qt + k) = \frac{q-k}{q} e(ak)\gamma(\alpha, t) + \frac{k}{q} e(-\alpha(q - k))\gamma(\alpha, t + 1)
$$

for $t \geq 0$ and $0 \leq k < q$. In particular, we have $\gamma(\alpha, qt) = \gamma(\alpha, t)$ and $u := \gamma(\alpha, 1) = (q - 1)/(q e(-\alpha) - e(-\alpha q))$. It is not difficult to see that $\gamma(\alpha, t)$ can be explicitly computed with the help of transition matrices. Set

$$
A(k) = \left(\begin{array}{cc}
\frac{q-k}{q} e(ak) & \frac{k}{q} e(-\alpha(q - k)) \\
\frac{q-k-1}{q} e(\alpha(k + 1)) & \frac{k+1}{q} e(-\alpha(q - k - 1))
\end{array}\right).
$$

Then we have

$$
\gamma(\alpha, t) = (1, 0) A(\varepsilon_0(t)) \cdots A(\varepsilon_{\nu}(t)) \left(\begin{array}{c} 1 \\ 0 \\
\bar{u} \\
1 \end{array}\right).
$$

(1)

Note that it is not important whether the proper representation of t is used in order to calculate $\gamma(\alpha, t)$. Indeed, this follows from the fact that $(1, u)^T$ is a right eigenvector of $A(0)$ to the eigenvalue 1. Note furthermore that $\gamma(\alpha, qt) = \gamma(\alpha, t)$ corresponds to the fact that $(1, 0)$ is a left eigenvector of $A(0)$ to the eigenvalue 1. Set

$$
S = \left(\begin{array}{cc} 1 & \bar{u} \\
0 & 1 \end{array}\right).
$$

Proposition 4. Let $\ell \geq 0$ and $(\varepsilon_0, \ldots, \varepsilon_\ell) \in \{0, \ldots, q - 1\}^{\ell+1}$. Then we have

$$
(1, 0) S^{-1} A(\varepsilon_0) \cdots A(\varepsilon_{\ell}) \left(\begin{array}{c} 1 \\ u \\
\bar{u} \\
1 \end{array}\right) = (1, 0) A(\varepsilon_\ell) \cdots A(\varepsilon_0) S \left(\begin{array}{c} 1 - |u|^2 \\
0 \\
0 \\
0 \end{array}\right)
$$

(2)

and

$$
(0, \bar{u}) S^{-1} A(\varepsilon_0) \cdots A(\varepsilon_{\ell}) \left(\begin{array}{c} 1 \\ u \\
\bar{u} \\
1 \end{array}\right) = (1, 0) A(\varepsilon_\ell) \cdots A(\varepsilon_0) S \left(\begin{array}{c} 0 \\
0 \\
0 \\
1 \end{array}\right).
$$

(3)

This proposition immediately implies Theorem 1. Indeed, if we sum up (2) and (3) we obtain

$$
(1, \bar{u}) S^{-1} A(\varepsilon_0) \cdots A(\varepsilon_{\ell}) \left(\begin{array}{c} 1 \\ u \\
\bar{u} \\
1 \end{array}\right) = (1, 0) A(\varepsilon_{\ell}) \cdots A(\varepsilon_0) S \left(\begin{array}{c} 1 - |u|^2 \\
0 \\
0 \\
1 \end{array}\right).
$$

Since $(1, \bar{u}) S^{-1} = (1, 0)$ and $S(1 - |u|^2, u)^T = (1, u)^T$, relation (1) implies that $\gamma(\alpha, t) = \gamma(\alpha, t^R)$.
Proof of Proposition 4. We will show this result by induction on ℓ. For notational convenience we set
\[A(\varepsilon) = \begin{pmatrix} a_1(\varepsilon) & a_2(\varepsilon) \\ a_3(\varepsilon) & a_4(\varepsilon) \end{pmatrix} \quad \text{and} \quad S^{-1}A(\varepsilon)S = \begin{pmatrix} s_1(\varepsilon) & s_2(\varepsilon) \\ s_3(\varepsilon) & s_4(\varepsilon) \end{pmatrix}. \]
Throughout the proof, we will use (at several places) the relation
\[a_1(\varepsilon)|u|^2 + a_2(\varepsilon)u = a_3(\varepsilon)\bar{u} + a_4(\varepsilon)|u|^2 \tag{4} \]
which holds for $0 \leq \varepsilon < q$. The validity of (4) is easily seen by multiplying both sides by $|u|^{-2}$ and evaluating them: This gives
\[\frac{e(\alpha\varepsilon)}{q-1}(q - \varepsilon - 1 + \varepsilon e(-\alpha(q-1))) \]
on the left hand side as well as on the right hand side. If $\ell = 0$ we have to show that
\[(1, 0)S^{-1}A(\varepsilon_0) \begin{pmatrix} 1 \\ u \end{pmatrix} = (1, 0)A(\varepsilon_0)S \begin{pmatrix} 1 - |u|^2 \\ 0 \end{pmatrix} \tag{5} \]
and
\[(0, \bar{u})S^{-1}A(\varepsilon_0) \begin{pmatrix} 1 \\ u \end{pmatrix} = (1, 0)A(\varepsilon_0)S \begin{pmatrix} 0 \\ u \end{pmatrix}. \tag{6} \]
Equation (5) is satisfied if $a_1(\varepsilon_0) + a_2(\varepsilon_0)u - a_3(\varepsilon_0)\bar{u} - a_4(\varepsilon_0)|u|^2 = a_1(\varepsilon_0)(1 - |u|^2)$.
Using (4), we see that this holds true indeed. Equation (6) is also equivalent to (4) and we are done. Assume now that $\ell \geq 1$. Set
\[\begin{pmatrix} a \\ b \end{pmatrix} = S^{-1}A(\varepsilon_1) \ldots A(\varepsilon_{\ell}) \begin{pmatrix} 1 \\ u \end{pmatrix} \quad \text{and} \quad (a', b') = (1, 0)A(\varepsilon_{\ell}) \ldots A(\varepsilon_1)S. \]
The induction hypothesis implies that
\[a = a'(1 - |u|^2) \quad \text{and} \quad b\bar{u} = b'u. \tag{7} \]
In order to prove (2), we have to show that
\[(1, 0)S^{-1}A(\varepsilon_0)S \begin{pmatrix} a \\ b \end{pmatrix} = (a', b')S^{-1}A(\varepsilon_0)S \begin{pmatrix} 1 - |u|^2 \\ 0 \end{pmatrix}. \tag{8} \]
This is equivalent to $s_1(\varepsilon_0)a + s_2(\varepsilon_0)b = s_1(\varepsilon_0)(1 - |u|^2)a' + s_3(\varepsilon_0)(1 - |u|^2)b'$. Using (7), we see that this holds true if $s_2(\varepsilon_0)u/\bar{u} = s_3(\varepsilon_0)(1 - |u|^2)$. Note that $s_2(\varepsilon_0)$ and $s_3(\varepsilon_0)$ are given by $s_2(\varepsilon_0) = a_1(\varepsilon_0)\bar{u} + a_2(\varepsilon_0) - \bar{u}a_4(\varepsilon_0) - a_4(\varepsilon_0)$ and $s_3(\varepsilon_0) = a_3(\varepsilon_0)$. Using these relations and (4), we see that (8) holds true. The validity of (3) can be shown the same way. This finally proves Proposition 4.
3. Proof of Corollary 2 and Corollary 3

Proof of Corollary 2. Using the dominated convergence theorem, we see that

\[\delta(d, t) = \lim_{x \to \infty} \frac{1}{x} \sum_{n < x} e(\alpha(s_q(n + t) - s_q(n) - d))d\alpha \]

Thus we have \(\delta(d, t) = \int_0^1 \gamma(\alpha, t)e(-\alpha)(d\alpha) \). By Theorem 1 we have \(\gamma(\alpha, t) = \gamma(\alpha, t^R) \) and we get \(\delta(d, t) = \delta(d, t^R) \).

Proof of Corollary 3. The sub-additivity of \(s_q(n) \) implies \(s_q(n + t) - s_q(n) \leq s_q(t) \). Therefore we have \(c_t = \sum_{k=0}^{s_q(t)} \delta(k, t) \). Since \(s_q(t) = s_q(t^R) \), we are done.

References

