A NEW APPROACH TO THE RESULTS OF KÖVARI, SÓS, AND TURÁN CONCERNING
RECTANGLE-FREE SUBSETS OF THE GRID

Jeremy F. Alm
Department of Mathematics, Illinois College, Jacksonville, Illinois
alm.academic@gmail.com

Jacob Manske
Department of Mathematics, Texas State University, San Marcos, Texas
jmanske@txstate.edu

Received: 6/5/12, Accepted: 11/12/12, Published: 11/16/12

Abstract
For positive integers \(m\) and \(n\), define \(f(m, n)\) to be the smallest integer such that
any subset \(A\) of the \(m \times n\) integer grid with \(|A| \geq f(m, n)\) contains a rectangle;
that is, there are \(x \in [m]\) and \(y \in [n]\) and \(d_1, d_2 \in \mathbb{Z}^+\) such that all four points
\((x, y), (x + d_1, y), (x, y + d_2),\) and \((x + d_1, y + d_2)\) are contained in \(A\). In 1954,
Kövari, Sós, and Turán showed that \(\lim_{k \to \infty} \frac{f(k, k)}{k^{3/2}} = 1\). They also showed that
\(f(p^2, p^2 + p) = p^2(p + 1) + 1\) whenever \(p\) is a prime number. We recover their
asymptotic result and strengthen the second, providing cleaner proofs which exploit
a connection to projective planes, first noticed by Mendelsohn. We also provide an
explicit lower bound for \(f(k, k)\) which holds for all \(k\).

1. Introduction and Motivation
For a positive integer \(n\), let \([n] = \{1, 2, \ldots, n\}\). For \(m, n \in \mathbb{Z}^+\), define \(f(m, n)\) to be
the least integer such that if \(A \subseteq [m] \times [n]\) with \(|A| \geq f(m, n)\), then \(A\) contains a
rectangle; that is, there is \(x \in [m], y \in [n],\) and \(d_1, d_2 \in \mathbb{Z}^+\) such that all four points
\((x, y), (x + d_1, y), (x, y + d_2),\) and \((x + d_1, y + d_2)\) are contained in \(A\). For ease in
notation, let \(f(k) = f(k, k)\). For \(c \in \mathbb{Z}^+,\) a \(c\)-coloring of a set \(S\) is a surjective map
\(\chi : S \to [c].\) If \(\chi\) is constant on a set \(A \subset S,\) we say that \(A\) is monochromatic.

We will write \(g(k) \sim h(k)\) to mean that functions \(g\) and \(h\) are asymptotically
equal; that is, \(\lim_{k \to \infty} \frac{g(k)}{h(k)} = 1\). Also, notice that \(f(m, n) = f(n, m)\) for any choice of

\(^{1}\)Corresponding author.
n and m.

The problem of finding bounds or exact values of \(f(m, n) \) finds its roots in the famous theorem of van der Waerden from [21], which states that given any positive integers \(c \) and \(d \), there exists an integer \(N \) such that any \(c \)-coloring of \([N]\) contains a monochromatic arithmetic progression of length \(d \). Szemerédi proved a density version of this theorem in [20], using the now well-known Regularity Lemma. Progress in this area is still being made. For instance, in [3], Axenovich and the second author try to find the smallest \(k \) so that in any 2-coloring of \([k] \times [k]\) there is a monochromatic square; i.e., a rectangle with \(d_1 = d_2 \). While the upper bounds are enormous, they proved \(k \geq 13 \); in [4], Bacher and Eliahou show that \(k = 15 \). In [10], the authors are interested in finding \(\text{OBS}_c \), which is the collection of \([m] \times [n]\) grids which cannot be colored in \(c \) colors without a monochromatic rectangle, but every proper subgrid can be; see also [7]. For a more complete survey on van der Waerden type problems, see [11].

Zarankiewicz introduced the problem of finding \(f(m, n) \) in [22] using the language of minors of \((0,1)\)-matrices. In [12], Kövári, Sós, and Turán show that \(f(k) \sim k^{3/2} \) and that whenever \(p \) is a prime number, we have \(f(p^2 + p, p^2) = p^2(p + 1) + 1 \). In this manuscript, we will recover this asymptotic result and strengthen the second result.

In [17], Reiman achieved the bound of

\[
f(m, n) \leq \frac{1}{2} \left(m + \sqrt{m^2 + 4mn(n-1)} \right) + 1.
\]

Notice that by setting \(m = p^2 + p \) and \(n = p^2 \), the right hand side of (1) becomes \(p^2(p + 1) + 1 \), so the result of Kövári, Sós, and Turán implies that the inequality is sharp. Reiman showed equality in (1) in the case that \(m = n = q^2 + q + 1 \), provided \(q \) is a prime power. In [14], Mendelsohn recovers and strengthens the equality result of Reiman by noticing the connection of the Zarankiewicz problem to projective planes.

A \(k \times k \) \((0,1)\)-matrix \(A \) corresponds to a subset \(S_A \subset [k] \times [k] \) by

\[
(i, j) \in S \text{ if and only if the } (i, j) \text{ entry of } A \text{ is 1.}
\]

Notice that the set \(S_A \) contains a rectangle if and only if the matrix \(A^T A \) has an entry off the main diagonal which is not equal to 0 or 1. Also notice that \(\text{tr}(A^T A) = |S_A| \).

Such \((0,1)\)-matrices arise in the study of projective planes. A projective plane of order \(n \) is an incidence structure consisting of \(n^2 + n + 1 \) points and \(n^2 + n + 1 \) lines such that

(i) any two distinct points lie on exactly one line;

(ii) any two distinct lines intersect in exactly one point;
(iii) each line contains exactly $n + 1$ points; and

(iv) there is a set of 4 points such that no 3 of these points lie on the same line.

It is not known for which positive integers n there exists a projective plane of order n; projective planes have been constructed for all prime-power orders, but for no others. In the well-known paper [5], Bruck and Ryser show that if the square-free part of n is divisible by a prime of the form $4k + 3$, and if n is congruent to 1 or 2 modulo 4, then there is no projective plane of order n; see also [6]. More recently, the authors in [8] draw a connection between the existence of projective planes of order greater than or equal to 157 and the number of cycles in $n \times n$ bipartite graphs of girth at least 6. In 1989, a computer search conducted by the authors in [13] showed that there is no projective plane of order 10. The smallest order for which it is still not known whether there is a projective plane is 12, although the results in [15, 19, 16, 1, 2] suggest that there is no such structure.

Next we state a lemma which appears in [14] connecting projective planes to the Zarankiewicz problem.

Lemma 1. If n is a positive integer such that there exists a projective plane of order n, then $f(n^2 + n + 1) = (n + 1)(n^2 + n + 1) + 1$.

We will include a proof of Lemma 1 both for completeness and since we will reference the lower bound construction in the proof of Theorem 4.

Proof of Lemma 1. Let n be a positive integer such that there is a projective plane of that order. For ease in notation, set $N = n^2 + n + 1$. First we will show that $f(N) \geq (n + 1)N + 1$.

We begin by constructing a $N \times N$ $(0,1)$-matrix A. There exists a projective plane P of order n; so let A be the $N \times N$ matrix whose rows correspond to the points of P and whose columns correspond to the lines of P where the (i,j) entry of A is equal to 1 if and only if the point indexed by i lies on the line indexed by j. Since any two distinct lines have exactly one point in common, the scalar product of any two distinct columns must be 1; hence, S_A does not contain a rectangle. Since each line contains exactly $(n+1)$ points, $|S_A| = tr(A^TA) = (n+1)N$, so $f(N) \geq (n+1)N + 1$.

Now, suppose A is any $N \times N$ $(0,1)$-matrix with $(n+1)N+1$ nonzero entries, and let a_i denote the number of 1s in row i. The number of pairs of 1s in row i is $\binom{a_i}{2}$, so the total number of pairs of 1s from each row is $\sum_{i=1}^{N} \binom{a_i}{2}$. The number of pairs of distinct column indices is $\binom{N}{2}$. If $\sum_{i=1}^{N} \binom{a_i}{2} > \binom{N}{2}$, the pigeonhole principle
implies that there is a pair of column indices such that there are two distinct rows which have 1s in both of those columns; i.e., S_A contains a rectangle.

To see that $\sum_{i=1}^{N} \left(\frac{a_i}{2} \right) > \binom{N}{2}$, recall that the Cauchy-Schwarz inequality gives

$$\left(\sum_{i=1}^{N} a_i \right)^2 \leq \sum_{i=1}^{N} a_i^2 \sum_{i=1}^{N} 1^2.$$ \hfill (2)

Since $\sum_{i=1}^{N} a_i = (n + 1)N + 1$ by assumption, the bound in (2) gives

$$(n + 1)^2 N + 2(n + 1) + \frac{1}{N} \leq \sum_{i=1}^{N} a_i^2.$$ \hfill (3)

Since $\sum_{i=1}^{N} a_i^2 = \sum_{i=1}^{N} a_i(a_i - 1) + \sum_{i=1}^{N} a_i = 2 \sum_{i=1}^{N} \left(\frac{a_i}{2} \right) + (n + 1)N + 1$, inequality (3) gives

$$N \left((n + 1)^2 - (n + 1) \right) + 2(n + 1) + \frac{1}{N} - 1 \leq 2 \sum_{i=1}^{N} \left(\frac{a_i}{2} \right).$$ \hfill (4)

Since $(n + 1)^2 - (n + 1) = n^2 + n + 1 - 1 = N - 1$, inequality (4) can be rewritten as

$$\frac{N(N - 1)}{2} + n + \frac{1}{N} + \frac{1}{2} \leq \sum_{i=1}^{N} \left(\frac{a_i}{2} \right),$$ \hfill (5)

and since $n > 0$, the left hand side of (5) is bound from below by $\binom{N}{2}$, as desired. \hfill \Box

It is interesting to note that we have equality in (2) just in case all of the a_i are equal; that is, each row and column contain the same number of 1s.

2. Main Results

Our main lemma is below, a useful proposition for dealing with asymptotic behavior of functions when some explicit values of the functions are known. A version of this lemma is used in [12], but it is neither proved nor explicitly stated.

Lemma 2. Suppose g and h are monotonically increasing functions. If a_n is a strictly increasing sequence of positive integers such that
INTEGERS: 12 (2012)

(i) \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1; \)

(ii) \(\lim_{n \to \infty} \frac{h(a_{n+1})}{h(a_n)} = 1; \) and

(iii) \(g(a_n) = h(a_n) \) for all \(n, \)

all hold, then \(g \sim h. \)

Theorem 3 recovers the asymptotic result of Kővari, Sós, and Turán. Theorem 4 strengthens another of their results. The proofs exploit the connection to projective planes, cleaning up the arguments found in [12]. Theorem 5 is an explicit lower bound for \(f(k), \) which holds for all \(k. \)

Theorem 3. \(f(k) \sim k^{3/2}. \)

Theorem 4. Let \(n \) be a positive integer. If there is a projective plane of order \(n, \)
then \(f(n^2, n^2 + n) = n^2 (n + 1) + 1. \)

Theorem 5. If \(k \in \mathbb{Z} \) with \(k \geq 3, \)
then \(f(k) \geq \frac{1}{16} ((k + 4)\sqrt{4k - 3} + 5k + 22). \)

3. **Proof of Lemma 2**

Now we prove Lemma 2.

Proof. Let \(g \) and \(h \) be monotonically increasing functions. Suppose \(a_n \) is a strictly increasing sequence of positive integers such that \(\lim_{n \to \infty} \frac{h(a_{n+1})}{h(a_n)} = 1 \) and that \(g(a_n) = h(a_n) \) for all \(n. \) Let \(\varepsilon > 0. \) Choose \(N \) so that

\[
\left| \frac{h(a_{n+1})}{h(a_n)} - 1 \right| < \varepsilon \quad \text{and} \quad \left| \frac{h(a_n)}{h(a_{n+1})} - 1 \right| < \varepsilon \quad (6)
\]

whenever \(n > N. \) Next, choose \(m \) large enough so that for some \(n > N, \) we have \(a_n \leq m \leq a_{n+1}. \) Since \(g \) is increasing and \(g \) and \(h \) agree on the sequence \(a_n, \) we have

\[
h(a_n) = g(a_n) \leq g(m) \leq g(a_{n+1}) = h(a_n + 1). \quad (7)
\]

Since \(h \) is monotone increasing, \(h(a_n) \leq h(m) \leq h(a_{n+1}), \) so we may transform (7) into

\[
\frac{h(a_n)}{h(a_{n+1})} \leq \frac{g(m)}{h(m)} \leq \frac{h(a_{n+1})}{h(a_n)}. \quad (8)
\]

Subtracting 1 from every term in (8) and taking absolute values gives that either

\[
\left| \frac{g(m)}{h(m)} - 1 \right| \leq \left| \frac{h(a_{n+1})}{h(a_n)} - 1 \right| \quad \text{or} \quad \left| \frac{g(m)}{h(m)} - 1 \right| \leq \left| \frac{h(a_n)}{h(a_{n+1})} - 1 \right|.
\]
Without loss of generality, say \(|g(m) h(m)^{-1} - 1| \leq |h(a_{n+1}) h(a_n)^{-1} - 1|\). By (6), we have

\[
\left| \frac{g(m)}{h(m)} - 1 \right| < \varepsilon,
\]

so \(\frac{g}{h} \rightarrow 1\) and \(g \sim h\), as desired. \(\square\)

4. Proof of Theorem 3

Now we prove Theorem 3.

Proof. For a positive integer \(k\), set

\[
h(k) = \left(\sqrt{k - \frac{3}{4} + \frac{1}{2}} \right) k + 1.
\]

Notice that \(h(k) \sim k^{3/2}\) and that \(h(n^2 + n + 1) = (n + 1)(n^2 + n + 1) + 1\), so by Lemma 1, we have \(f(n^2 + n + 1) = h(n^2 + n + 1)\) whenever there is a projective plane of order \(n\). Since there a projective plane of order \(p\) for every prime \(p\), we have that \(f\) and \(h\) agree on an infinite sequence of integers \(a_n\) for which \(\frac{a_n+1}{a_n} \rightarrow 1\) (see [18, 9]). Notice that \(\frac{h(a_{n+1})}{h(a_n)} \rightarrow 1\), so we may apply Lemma 2 to achieve \(f \sim h\), and thus \(f \sim k^{3/2}\), as desired. \(\square\)

5. Proof of Theorem 4

Proof. Let \(n\) be a positive integer such that there is a projective plane of order \(n\). Set \(N = n^2 + n + 1\). As in the proof of Lemma 1, we can construct an \(N \times N\) matrix \(A\) such that \(tr\ (A^TA) = (n + 1)N\) and that \(A^TA\) has only 1s off the main diagonal; hence, the corresponding subset \(S_A\) of the \(N \times N\) grid has no rectangle.

To construct an \(n^2 \times (n^2 + n)\) matrix \(B\) from \(A\), we delete the first column of \(A\) along with all rows having a 1 in the first column. Since each row and column of \(A\) contains exactly \(n + 1\) nonzero entries, we have deleted \(n + 1\) rows and 1 column. The resulting matrix \(B\) is thus an \(n^2 \times (n^2 + n)\) matrix. Since \(A^TA\) has no entries off the main diagonal greater than 1, \(B^TB\) has no entries off the main diagonal greater than 1. Since we have deleted \((n + 1)^2\) nonzero entries from \(A\), we have that

\[
|S_B| = (n + 1)N - (n + 1)^2 = (n + 1)(n^2 + n + 1) - (n + 1)^2 = n^2(n + 1),
\]
so \(f(n^2, n^2 + n) \geq n^2(n + 1) + 1. \)

Using the inequality from Reiman (1),

\[
f(n^2, n^2 + n) \leq n^2(n + 1) + 1,
\]

and hence \(f(n^2, n^2 + n) = n^2(n + 1) + 1, \) as desired.

The structure obtained by taking a projective plane and deleting a line together with all of the points on that line is called an affine plane. Our result is stronger than that of the authors in [12], since we need only that there is a projective plane of order \(n \), not that \(n \) is a prime number.

6. Proof of Theorem 5

Proof. Suppose \(k \) is an integer with \(k \geq 3 \). There exists a nonnegative integer \(\alpha \) such that

\[
2^{2\alpha} + 2^\alpha + 1 \leq k \leq 2^{2\alpha+2} + 2^{\alpha+1} + 1. \tag{9}
\]

By focusing on the upper bound from (9), this gives \(k \leq (2^{\alpha+1} + 1/2)^2 + 3/4, \) or

\[
\frac{\sqrt{k - 3/4} - 1/2}{2} \leq 2^\alpha. \tag{10}
\]

Let \(g(n) = (n + 1)(n^2 + n + 1) + 1, \) and let \(h(k) = \frac{\sqrt{k - 3/4} - 1/2}{2}. \) Since \(g \) is an increasing function, inequality (10) gives

\[
g(h(k)) \leq g(2^\alpha). \tag{11}
\]

By Lemma 1, we have \(g(n) = f(n^2 + n + 1) \) whenever there exists a projective plane of order \(n \). Since there is a projective plane of any prime power order, (11) gives

\[
g(h(k)) \leq f(2^{2\alpha} + 2^{\alpha} + 1). \tag{12}
\]

But since \(f \) is increasing, the lower bound in (9) gives \(g(h(k)) \leq f(k), \) and since \(g(h(k)) = \frac{1}{16} ((k + 4)\sqrt{4k - 3} + 5k + 22) \), we have the desired result.

We also note that while \(g(h(k)) \sim \frac{1}{8} k^{3/2} \), which is worse than the result in Theorem 3, this lower bound holds for every choice of \(k \), and not just those \(k \) for which there exists a projective plane of order \(k \).
7. Further Research

Trying to find the exact value of \(f(m, n) \) without conditions on \(m \) and \(n \) (that is, removing the extra hypotheses from the results in [12]) would be attractive, although this problem has been open for years, and likely requires a new idea.

The next attractive direction is to take the approach of the authors in [10], and consider colorings of rectangular grids.

Recall that \(\text{OBS}_c \) is the collection of \([m] \times [n] \) grids which cannot be colored in \(c \) colors without a monochromatic rectangle, but every proper subgrid can be. An open problem from [10] is the rectangle-free conjecture: if there exists a rectangle-free subset of \([m] \times [n] \) of size \(\lfloor mn/c \rfloor \), then it is possible to color \([m] \times [n] \) in \(c \) colors so there is no monochromatic rectangle. Since the authors in [10] have theorems which depend on the rectangle-free conjecture, resolving this conjecture either in the affirmative or the negative would result in progress for obtaining \(|\text{OBS}_c| \) or even \(\text{OBS}_c \).

Acknowledgments. The authors wish to thank Jim Marshall for carefully reading a draft of this manuscript. The authors also thank the anonymous referees for their helpful comments made toward improving the paper.

References

