ON SETS WITH MORE RESTRICTED SUMS THAN DIFFERENCES

David Penman
Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
dbpenman@essex.ac.uk

Matthew Wells
Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
mwells@essex.ac.uk

Received: 8/2/12, Revised: 4/3/13, Accepted: 7/27/13, Published: 9/26/13

Abstract

Given a finite set A of integers, we define its restricted sumset $A + A$ to be the set of sums of two distinct elements of A - a subset of the sumset $A + A$ - and its difference set $A - A$ to be the set of differences of two elements of A. We say A is a restricted-sum-dominant set if $|A + A| > |A - A|$. Though intuition suggests that such sets should be rare, we present various constructions of such sets and prove that a positive proportion of subsets of $\{0, 1, \ldots, n - 1\}$ are restricted-sum-dominant sets. As a by-product, we improve on the previous record for the maximum value of $\ln(|A + A|)/\ln(|A - A|)$, and give some related discussion.

1. Introduction

Let A be a finite set of integers. We define its sumset $A + A$ to be $\{a + b : a, b \in A\}$, its difference set $A - A$ to be $\{a - b : a, b \in A\}$ and its restricted sumset $A + A$ to be $\{a + b : a \neq b, a, b \in A\}$. It is a natural intuition that, since addition is commutative but subtraction is not, that ‘often’ we should have $|A + A| \leq |A - A|$. However it has been known for some time that this is not always the case: for example, the set $C = \{0, 2, 3, 4, 7, 11, 12, 14\}$, which is attributed to Conway, has $|C + C| = 26$, but $|C - C| = 25$. In this paper, sets with this property are called sum-dominant: in some other literature, they are described as MSTD (for ‘more sums than differences’) sets, see, e.g., Nathanson [6]. It is now known by work of Martin and O’Bryant [5] that sum-dominant sets are less rare than they might initially appear: they prove that, for $n \geq 15$, the proportion of subsets of $\{0, 1, 2 \ldots n - 1\}$
which are sum-dominant is at least 2×10^{-7}. The constant was sharpened, and the existence of a limit shown, by Zhao [11].

In this paper we investigate what might appear to be an even more demanding condition on a set, namely what we will call the restricted-sum-dominant property.

Definition 1. A set A of integers is said to be *restricted-sum-dominant* if $|\hat{A} \mathbin{+} A| > |A - A|$. There are examples of this. For example, we find the set from Hegarty [3]

$$A_{15} = \{0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45\}$$

has $|\hat{A}_{15} \mathbin{+} A_{15}| = 86$ whilst $|A_{15} - A_{15}| = 83$.

Clearly any restricted-sum-dominant set is sum-dominant. The converse is false as Conway’s set is sum-dominant but not restricted-sum-dominant ($|C \mathbin{+} C| = 21$).

Note that the property of being restricted-sum-dominant is preserved when we apply a bijection of the form $x \to ax + b$ with $a, b \in \mathbb{Z}, a \neq 0$. It therefore suffices to consider sets $A \subset \mathbb{Z}$ with $\min(A) = 0$ and $\gcd(A) = 1$. We shall refer to such sets as being *normalised*.

The organisation of this paper is as follows. In Section 2 we exhibit several sequences of restricted-sum-dominant sets, addressing some natural questions about the relative sizes of the restricted sumset and difference sets. In Section 3, we show that a strictly positive proportion of subsets of $\{0, 1, 2, \ldots, n-1\}$ are restricted-sum-dominant sets. In Section 4 we obtain a new record high value of each of

$$f(A) = \frac{\ln(|A + A|)}{\ln(|A - A|)} \quad \text{and} \quad g(A) = \frac{\ln(|A \mathbin{+} A|/|A|)}{\ln(|A - A|/|A|)}$$

and give some related discussion. Finally, in Section 5 we improve somewhat the bounds on the order of the smallest restricted-sum-dominant set.

We shall, slightly unusually, use the notation $[a, b]$, when $a < b$ are integers, to denote $\{a, a + 1, \ldots, b\}$.

We are grateful to the referee for suggestions which have non-trivially improved the organisation and exposition of this paper, especially in Section 5.

2. Explicit Sequences of Restricted-Sum-Dominant Sets

Our first sequence of restricted-sum-dominant sets arose by considering the set $B = \{0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25, 28, 30, 32, 33\}$ which appears in [7] and [9] as a set of integers with $|B \mathbin{+} B| > |(B - B) \setminus \{0\}|$. We then noted that replacing 33 with 29 gives a 16-element restricted-sum-dominant set (which will be T_3^3 below). To get the subsequent terms of the sequence, we used (here and elsewhere in the paper) the idea from [9], Conjecture 6, that repetition of certain so-called interior
blocks when the set is written in order as a sequence of differences can increase the size of the sumset more than the difference set: see [9] for details.

Theorem 2. For every integer \(j \geq 1 \) we define

\[
T_j^* = \{0, 2\} \cup \{1, 9, \ldots, 1 + 8j\} \cup \{4, 12, \ldots, 4 + 8j\} \\
\cup \{5, 13, \ldots, 5 + 8j\} \cup \{6 + 8j, 8(j + 1)\}.
\]

Then

\[
T_j^* \star T_j^* = [1, 6 + 8(2j + 1)] \setminus \{8, 8(2j + 1)\}, \\
T_j^* + T_j^* = [0, 8(2j + 2)] \setminus \{7 + 8(2j + 1)\} \text{ and} \\
T_j^* - T_j^* = [-8(j + 1), 8(j + 1)] \setminus \{\pm 6, \ldots \pm (6 + 8(j - 1))\}.
\]

Proof: We deal first with the restricted sumset. Since \(0 \in T_j^* \), \(T_j^* \setminus \{0\} \subseteq T_j^* \star T_j^* \), giving all elements congruent to 1, 4 or 5 mod 8 less than \(8(j + 1) \). Also

\[
8(j + 1) \oplus \{1, 9, \ldots, 1 + 8j\} = \{1 + 8(j + 1), \ldots, 1 + 8(2j + 1)\}
\]

\[
8(j + 1) \oplus \{4, 12, \ldots, 4 + 8j\} = \{4 + 8(j + 1), \ldots, 4 + 8(2j + 1)\}
\]

\[
8(j + 1) \oplus \{5, 13, \ldots, 5 + 8j\} = \{5 + 8(j + 1), \ldots, 5 + 8(2j + 1)\}
\]

so \(T_j^* \star T_j^* \) contains all the elements congruent modulo 8 to 1, 4 or 5 stated. For integers congruent to 2 modulo 8 the restricted sumset contains 0+2 and

\[
\{1, 9, \ldots, 1 + 8j\} \oplus \{1, 9, \ldots, 1 + 8j\} = \{10, 18, \ldots, 2 + 8(2j - 1)\}
\]

gives most of the rest: the two missing elements are \((4+8j)+(6+8j)=2+8(2j+1)\)

and \(4+8(j-1)+6+8j=2+8(2j)\).

For integers congruent to 3 modulo 8, note that

\[
\{1, 9, \ldots, 1 + 8j\} \oplus \{2\} = \{3, 11, \ldots, 3 + 8j\}
\]

and

\[
(6 + 8j) \oplus \{5, 13, \ldots, 5 + 8j\} = \{3 + 8(j + 1), \ldots, 3 + 8(2j + 1)\}.
\]

For integers congruent to 6 modulo 8,

\[
\{1, 9, \ldots, 1 + 8j\} \oplus \{5, 13, \ldots, 5 + 8j\} = \{6, 14, \ldots, 6 + 8(2j)\}
\]

and \((6+8j)+8(j+1)=6+8(2j+1)\in T_j^* \star T_j^* \) also. The elements congruent to 7 modulo 8 are obtained from

\[
(2) + \{5, 13, \ldots, 5 + 8j\} = \{7, 15, \ldots, 7 + 8j\}
\]

and

\[
(6 + 8j) + \{1, 9, \ldots, 1 + 8j\} = \{7 + 8j, \ldots, 7 + 8(2j)\}
\]
in \(T'_j + T'_j \). Finally, the required multiples of 8 are obtained from
\[
\{4, 12, \ldots, 4 + 8j\} + \{4, 12, \ldots, 4 + 8j\} = \{16, 24, \ldots, 8(2j)\}.
\]
Finally we note that the alleged omitted elements 0, 8 and \(8(2j + 1) \) are not in \(T'_j + T'_j \). The claim for 0 is clear, the only way to get 8 is as \(4 + 4 \) which is not a restricted sum, for \(8(2j + 1) \) the large elements of \(T'_j \) are \(5 + 8j, 6 + 8j, 8(j + 1) \in T'_j \) but \(3 + 8j, 2 + 8j, 8j \notin T'_j \) so it could only be obtained as \((4 + 8j) + (4 + 8j) \) which is not a restricted sum.

Next we address the sumset \(T'_j + T'_j \). All we need do here is note that \(0 = 0 + 0, \)
\(8 = 4 + 4, 7 + 8(2j + 1) \) is still not attained and that \(8(2j + 2) = 8(j + 1) + 8(j + 1) \).

We finally deal with \(T'_j - T'_j \). Given that \(d \in T_j - T_j \iff -d \in T_j - T_j \) it suffices
to consider the positive differences. Firstly we show that \(\{6, \ldots, 6 + 8(j - 1)\} \notin T'_j - T'_j \). Given that \(T'_j \) has the form
\[
T'_j = \{0, 1 + 8x, 2, 4 + 8y, 5 + 8z, 6 + 8j, 8(j + 1)\}
\]
(where \(0 \leq x, y, z, \leq j \)), considering the difference set \(T'_j - T'_j \) we see that the only
difference of the form \(6 + 8t \) (where \(t \) is a non-negative integer) is \(6 + 8j \), as stated.

To confirm \(T'_j - T'_j \) does contain the other elements in the interval specified, note
that, as \(0 \in T'_j, T'_j \subseteq T'_j - T'_j \). The other elements are obtained as follows:
\[
\{1, 9, \ldots, 1 + 8j\} - (1) = \{0, 9, \ldots, 8j\}
\{4, 12, \ldots, 4 + 8j\} - 1 = \{3, 11, \ldots, 3 + 8j\}
\{4, 12, \ldots, 4 + 8j\} - 2 = \{2, 10, \ldots, 2 + 8j\}
\{12, 20, \ldots, 4 + 8j\} - (5) = \{7, 15, \ldots, 7 + 8(j - 1)\}
8(j + 1) - (1) = 7 + 8j.
\]
Thus all the elements of the right-hand side are in \(T'_j - T'_j \) as required. \(\Box \)

Corollary 3. For every integer \(j \geq 1 \) the set \(T'_j \subset \mathbb{Z} \) has
\[
| T'_j | = 3j + 7, \quad | T'_j + T'_j | = 16j + 12, \quad | T'_j + T'_j | = 16j + 16 \quad \text{and} \quad | T'_j - T'_j | = 14j + 17.
\]
Therefore
\[
| T'_j + T'_j | - | T'_j - T'_j | = 2j - 5, \quad | T'_j + T'_j | - | T'_j - T'_j | = 2j - 1
\]
and \(T'_j \) is an restricted-sum-dominant set for every integer \(j \geq 3 \).

\(T'_j \) of order 16 is one of the two smallest restricted-sum-dominant sets we have.

The set \(T'_j \) has a superset \(T_j = T'_j \cup 1 + 8(j + 1) \), which is also restricted-sum-dominant for \(j \geq 3 \):
Theorem 4. For every integer \(j \geq 1 \) define

\[
T_j = \{0, 2\} \cup \{1, 9, \ldots, 1 + 8(j + 1)\} \cup \{4, 12, \ldots, 4 + 8j\} \\
\cup \{5, 13, \ldots, 5 + 8j\} \cup \{6 + 8j, 8(j + 1)\}.
\]

Then

\[
T_j + T_j = [1, 1 + 8(2j + 2)] \backslash \{8, 8(2j + 1), 8(2j + 2)\},
\]

\[
T_j + T_j = [0, 2 + 8(2j + 2)] \text{ and}
\]

\[
T_j - T_j = [-1 + 8(j + 1)), 1 + 8(j + 1)] \backslash \{\pm 6, \ldots, \pm (6 + 8(j - 1))\}.
\]

Proof. Firstly since \(T_j \supset T_j' \) we have \(T_j + T_j \supset [1, 6 + 8(2j + 1)] \backslash \{8, 8(2j + 1)\} \). With \(1 + 8(j + 1) \in T_j \) we now also have that

\[
8(j + 1) + (1 + 8(j + 1)) = 1 + 8(2j + 2) \quad \text{and}
\]

\[
(6 + 8j) + (1 + 8(j + 1)) = 7 + 8(2j + 1)
\]

are in \(T_j + T_j \) as well. Furthermore

\[
(1 + 8(j + 1)) + (1 + 8(j + 1)) = 2 + 8(2j + 2) \in T_j + T_j.
\]

This completes the claims for the sumset and restricted sumset, noting that clearly 8 and 8(2j + 2) are not in \(T_j + T_j \) and checking that 8(2j + 1) \(\not\in T_j + T_j \).

As regards the difference set, with \(0 \leq x \leq j + 1 \) the positive differences resulting from the introduction of the new element have the form

\[
(1 + 8(j + 1)) - \{0, 2, 1 + 8x, 4 + 8y, 5 + 8z, 6 + 8j, 8(j + 1)\}
\]

\[
= \{1 + 8(j + 1), 8j + 7, 8(j - x + 1), 8(j - y) + 5, 8(j - z) + 4, 3, 1, 0\}.
\]

This shows that \(T_j - T_j = T_j' - T_j' \cup \{1 + 8(j + 1)\} \) and the result follows. \(\Box \)

Corollary 5. For every integer \(j \geq 1 \) the set \(T_j \subset \mathbb{Z} \) has

\[
|T_j| = 3j + 8, \ |T_j + T_j| = 16j + 14, \ |T_j + T_j| = 16j + 19 \quad \text{and} \quad |T_j - T_j| = 14j + 19.
\]

Therefore

\[
|T_j + T_j| - |T_j - T_j| = 2j - 5, \quad |T_j + T_j| - |T_j - T_j| = 2j
\]

and \(T_j \) is an restricted-sum-dominant set for every integer \(j \geq 3 \).

In [5], Martin and O’Bryant construct, for all integers \(x \), subsets \(S \) of \([0, 17|x|] \) with \(|S + S| - |S - S| = x \). Corollary 3 shows that for each positive odd integer \(x \) there is \(T_j' \subset \mathbb{Z} \) with \(|T_j' + T_j'| - |T_j' - T_j'| = x \), and Corollary 5 shows each positive
even integer can be expressed as the difference of the cardinalities of the sumset and the difference set of some $T_j \subset \mathbb{Z}$.

Recall that the diameter of a finite set A of integers is $\max(A) - \min(A)$. There is some interest in finding sets of integers of small diameter with prescribed relationships between the order of the sumset (or restricted sumset) and the difference set: see, e.g., [5] Theorem 4 where sets S_x of diameter at most $17|x|$ are constructed with $|S_x + S_x| - |S_x - S_x|$ equal to x. Our sets T_j and T'_j have respective diameters $8j + 8$ and $8j + 9$, which is smaller than the sets S_x in [5] for $j \geq 3$.

Further Corollary 5 makes it clear that the difference between the size of the restricted sumset and the difference set can be any odd positive integer. We will get any even difference for $|A + A| - |A - A|$ in our next construction. This was motivated by the sum-dominant (but not restricted-sum-dominant) set called $A_{13} = \{0, 1, 2, 4, 7, 8, 12, 14, 15, 18, 19, 20\}$ in Hegarty [3]. We exhibit, addressing his remark about the desirability of generalising A_{13}, two infinite sequences of (eventually) restricted-sum dominant sets derived from A_{13} (which shall be our R_1).

Theorem 6. For each integer $j \geq 1$ define $R_j \subset \mathbb{Z}$ to be the set

$$R_j = \{1, 4\} \cup \{0, 12, \ldots, 12j\} \cup \{2, 14, \ldots, 2 + 12j\} \cup \{7, 19, \ldots, 7 + 12j\} \cup \{8, 20, \ldots, 8 + 12j\} \cup \{3 + 12j, 6 + 12j\}.$$

For each integer $j \geq 2$ we have

$$R_j + R_j = [1, 3 + 12(2j + 1)] \setminus \{(17, \ldots, 5 + 12(j - 1)) \cup \{12(2j), 12(2j + 1)\}\},$$

$$R_j + R_j = [0, 4 + 12(2j + 1)] \setminus \{(17, \ldots, 5 + 12(j - 1))\} \quad \text{and}$$

$$R_j - R_j = [-(8 + 12j), 8 + 12j] \setminus \{\pm 9, \ldots, \pm (9 + 12(j - 1))\}.$$

Proof. We first verify the claim for the restricted sumset. For multiples of 12,

$$\{0, 12, \ldots, 12j\} + \{0, 12, \ldots, 12j\} = \{12, 24, \ldots, 12(2j - 1)\}.$$

The elements congruent to 1 modulo 12 are given by

$$(1) + \{0, 12, \ldots, 12j\} = \{1, 13, \ldots, 1 + 12j\}.$$

and

$$(6 + 12j) + \{7, 19, \ldots, 7 + 12j\} = \{1 + 12(j + 1), \ldots, 1 + 12(2j + 1)\}.$$

For those congruent to 2 modulo 12

$$\{0, 12, \ldots, 12j\} + \{2, 14, \ldots, 2 + 12j\} = \{2, 14, \ldots, 2 + 12(2j)\}.$$

and also $(6 + 12j) + (8 + 12j) = 2 + 12(2j + 1) \in R_j + R_j$. For 3 modulo 12 clearly $3 = 1 + 2 \in R_j + R_j$ and the rest follow from

$$\{7, 19, \ldots, 7 + 12j\} + \{8, 20, \ldots, 8 + 12j\} = \{15, 27, \ldots, 3 + 12(2j + 1)\}.$$

For elements congruent to 4 modulo 12, we clearly have that 4 and 16 are in $R_j + R_j$ as well as

$$\{8, 20, \ldots, 8 + 12j\} + \{8, 20, \ldots, 8 + 12j\} = \{28, 40, \ldots, 4 + 12(2j)\}.$$

The elements congruent to 6 modulo 12 in $R_j + R_j$ can be obtained as the union of

$$(4) + \{2, 14, \ldots, 2 + 12j\} = \{6, 18, \ldots, 6 + 12j\}$$

and

$$(6 + 12j) + \{0, 12, \ldots, 12j\}.$$

The elements congruent to 7 (respectively 8) modulo 12 are obtained from

$$\{0, 12, \ldots, 12j\} + \{7, 19, \ldots, 7 + 12j\} = \{7, 19, \ldots, 7 + 12(2j)\}.$$

and

$$\{0, 12, \ldots, 12j\} + \{8, 20, \ldots, 8 + 12j\} = \{8, 20, \ldots, 8 + 12(2j)\}.$$

For 9 (respectively 10) modulo 12 use

$$\{2, 14, \ldots, 2 + 12j\} + \{7, 19, \ldots, 7 + 12j\} = \{9, 21, \ldots, 9 + 12(2j)\}$$

respectively

$$\{2, 14, \ldots, 2 + 12j\} + \{8, 20, \ldots, 8 + 12j\} = \{10, 22, \ldots, 10 + 12(2j)\}.$$

Finally the elements congruent to 11 modulo 12 are obtained from

$$(4) + \{7, 19, \ldots, 7 + 12j\} = \{11, 23, \ldots, 11 + 12j\}$$

and

$$(3 + 12j) + \{8, 20, \ldots, 8 + 12j\} = \{11 + 12j, \ldots, 11 + 12(2j)\}.$$

To see that the restricted sumset does not contain any of $\{17, \ldots, 5 + 12(j - 1)\}$, note that none of the sumsets of the progressions with common difference 12 give elements which are congruent to 5 modulo 12 and neither can translates of the progressions by 1 or 4). The remaining elements congruent to 5 modulo 12 are obtained as clearly 5 $\in R_j + R_j$, and also

$$(3 + 12j) + \{2, 14, \ldots, 2 + 12j\} = \{5 + 12j, \ldots, 5 + 12(2j)\} \subseteq R_j + R_j.$$

Finally, to see that $R_j + R_j$ does not contain $12(2j)$ or $12(2j + 1)$, note that it is impossible to obtain $12(2j)$ as a sum of distinct elements of R_j since the only elements of R_j greater than $12j$ are $S = \{2 + 12j, 3 + 12j, 6 + 12j, 7 + 12j, 8 + 12j\}$ but none of the numbers in $2(12j) - S$ (namely $10 + 12(j - 1), 9 + 12(j - 1)$,
6 + 12(j - 1), 5 + 12(j - 1), 4 + 12(j - 1)) are in \(R_j \). Further as \(12(j + 1) \not\in R_j \)
\(12(2j + 1) \) is excluded from \(R_j \). This completes the argument for \(R_j \).

However, we do have that \(12j + 12j = 12(2j) \in R_j \) and \((6 + 12j) + (6 + 12j) = 12(2j + 1) \in R_j \). Since we readily see that none of the numbers congruent to 7 mod 12 ruled out of \(R_j \) are in \(R_j + R_j \) either, the subset is as stated.

To confirm the claim for the difference set as before we consider the positive differences. Writing \(R_j \) as

\[
\{1, 4, 12w, 2 + 12x, 7 + 12y, 8 + 12z, 3 + 12j, 6 + 12j\}
\]

the remainders which occur in \(R_j - R_j \) are exactly the set \([0, 11]\setminus\{9\}\). On the other hand, to see that \(R_j - R_j \) contains all the claimed differences, note that as \(0 \in R_j \)
we have \(R_j \subset R_j - R_j \). Also the right hand sides of

\[
\begin{align*}
\{0, 12, \ldots, 12j\} - (1) &= \{-1, 11, \ldots, 11 + 12(j - 1)\} \\
\{2, 14, \ldots, 2 + 12j\} - (1) &= \{1, 13, \ldots, 1 + 12j\} \\
\{7, 19, \ldots, 7 + 12j\} - (4) &= \{3, 15, \ldots, 3 + 12j\} \\
\{8, 20, \ldots, 8 + 12j\} - (4) &= \{4, 16, \ldots, 4 + 12j\} \\
\{7, 19, \ldots, 7 + 12j\} - (2) &= \{5, 17, \ldots, 5 + 12j\} \\
\{7, 19, \ldots, 7 + 12j\} - (1) &= \{6, 18, \ldots, 6 + 12j\} \\
\{2, 14, \ldots, 2 + 12j\} - (4) &= \{-2, 10, \ldots, 10 + 12(j - 1)\}.
\end{align*}
\]

are in the difference set which completes the claim.

\[\square \]

Corollary 7. For every integer \(j \geq 2 \) the set \(R_j \subset \mathbb{Z} \) has

\[|R_j| = 4j + 8, \quad |R_j + R_j| = 23j + 14, \quad |R_j + R_j| = 23j + 18 \quad \text{and} \quad |R_j - R_j| = 22j + 17. \]

Therefore

\[|R_j + R_j| - |R_j - R_j| = j - 3, \quad |R_j + R_j| - |R_j - R_j| = j + 1 \]

and \(R_j \) is an restricted-sum-dominant set for every integer \(j \geq 4 \).

This indeed confirms that any positive integer can be obtained as \(|R_j + R_j| - |R_j - R_j| \).

Our fourth sequence of sets, the \(M_j \)'s, also has \(R_1 \) (Hegarty’s \(A_{13} \)) as its first member, but this time we focus not on prescribing \(|M_j + M_j| - |M_j - M_j| \) but instead on getting a reduced diameter \(9 + 11j \) rather than the diameter \(8 + 12j \) of \(R_j \). (We were first led to this family by considering Marica’s sum-dominant set \([4] M = \{1, 2, 3, 5, 8, 9, 13, 15, 16\} \), normalising it and trying to expand it to a restricted-sum-dominant set).
Theorem 8. For $j \geq 1$ define

$$M_j = \{0, 2\} \cup \{1, 12, \ldots, 1 + 11j\} \cup \{4, 15, \ldots, 4 + 11j\}$$

$$\cup \{7, 18, \ldots, 7 + 11j\} \cup \{8, 19, \ldots, 8 + 11j\} \cup \{3 + 11j, 9 + 11j\}$$

We then have that

$$M_j + M_j = [1, 6 + 11(2j + 1)] \setminus \{3 + 11(2j + 1)\}$$

$$M_j + M_j = [0, 7 + 11(2j + 1)] \text{ and}$$

$$M_j - M_j = [- (9 + 11j), 9 + 11j] \setminus \{ \pm 9, \ldots, \pm (9 + 11(j - 1))\}.$$
For the case $a = 3$

$$\{7,18,\ldots,7+11j\} \oplus \{7,18,\ldots,7+11j\} = \{25,36,\ldots,3+11(2j)\}$$

and $3 = 1+2, 14 = 2+12$ are in $M_j \hat{\oplus} M_j$.

For the case $a = 7$

$$\{0\} + \{7,18,\ldots,7+11j\} = \{7,18,\ldots,7+11j\}$$
$$\{3+11j\} + \{4,15,\ldots,4+11j\} = \{7+11j,\ldots,7+11(2j)\}.$$

For the case $a = 8$

$$\{1,12,\ldots,1+11j\} \oplus \{7,18,\ldots,7+11j\} = \{8,19,\ldots,8+11(2j)\}.$$

For the case $a = 9$

$$\{1,12,\ldots,1+11j\} \oplus \{8,19,\ldots,8+11j\} = \{9,20,\ldots,9+11(2j)\}.$$

For $a = 10$

$$\{2\} \oplus \{8,19,\ldots,8+11j\} = \{10,21,\ldots,10+11j\}$$
$$\{3+11j\} \oplus \{7,18,\ldots,7+11j\} = \{10+11j,\ldots,10+11(2j)\}.$$

For $a = 11$

$$\{4,15,\ldots,4+11j\} \oplus \{7,18,\ldots,7+11j\} = \{11,22,\ldots,11+11(2j)\}.$$

To see that $3 + 11(2j + 1) \notin M_j \hat{\oplus} M_j$, if it did not we would have a sum of the form $(a + 11j) + (c + 11j) = 14 + 22j$ from elements of M_j with $a + c = 14$, however, since a and c are distinct elements of $\{1,3,4,7,8,9\}$ this is impossible and hence $3 + 11(2j + 1) \notin M_j \hat{\oplus} M_j$. This confirms the claim for the restricted sunset. Furthermore for each $m \in M_j$ the sumset contains $0, 2(7 + 11j) = 3 + 11(2j + 1)$ and $2(9 + 11j) = 7 + 11(2j + 1)$ which completes the claim for the sunset.

For the difference set to see that $\{\pm 9,\ldots,\pm(9+11(j-1))\} \notin M_j - M_j$ let

$$M_j = \{0,2,1+11w,4+11x,7+11y,8+11z,3+11j,9+11j\},$$

where $0 \leq w, x, y, z \leq j$. It suffices to consider just the positive differences. Calculation of $M_j - M_j$ reveals that the only positive difference congruent to 9 modulo 11 is $(9+11j) - 0$, which is outside the range claimed.

To see that $M_j - M_j$ contains the remaining elements in the interval, firstly note that as $0 \in M_j$ we have $M_j - M_j \supset M_j$. Furthermore $M_j - M_j$ also contains the
right-hand sides of the following:

\[
\begin{align*}
\{1, 12, \ldots, 1 + 11j\} \setminus (1) &= \{0, 11, \ldots, 11j\} \\
\{4, 15, \ldots, 4 + 11j\} \setminus (1) &= \{3, 14, \ldots, 3 + 11j\} \\
\{7, 18, \ldots, 7 + 11j\} \setminus (1) &= \{6, 17, \ldots, 6 + 11j\} \\
\{1, 12, \ldots, 1 + 11j\} \setminus (2) &= \{-1, 10, 21, \ldots, 10 + 11(j - 1)\} \\
\{4, 15, \ldots, 4 + 11j\} \setminus (2) &= \{2, 13, \ldots, 2 + 11j\} \\
\{7, 18, \ldots, 7 + 11j\} \setminus (2) &= \{5, 16, \ldots, 5 + 11j\} \\
9 + 11j - 0 &= 9 + 11j.
\end{align*}
\]

This completes the claim of the theorem. \(\square\)

Corollary 9. For every integer \(j \geq 1\) the set \(M_j \subset \mathbb{Z}\) has

\[
|M_j| = 4j + 8, \quad |M_j + M_j| = 22j + 16, \quad |M_j + M_j| = 22j + 19 \quad \text{and} \quad |M_j - M_j| = 20j + 19.
\]

Hence

\[
|M_j + M_j| - |M_j - M_j| = 2j - 3, \quad |M_j + M_j| - |M_j - M_j| = 2j
\]

and \(M_j\) is an restricted-sum-dominant set for every \(j \geq 2\).

Note that the set \(M_2\) has slightly smaller diameter 31 than the other 16-element restricted-sum-dominant set \(T_3^{16}\).

Martin and O’Bryant refer to sets with \(|A + A| = |A - A|\) as sum-difference balanced. Similarly we can consider sets with \(|A + A| = |A - A|\) as restricted-sum-difference balanced. The results above show such sets exist (e.g., \(R_3\)). The smallest such set we have found has order 14: it is

\[
M' = \{0, 1, 2, 4, 7, 8, 12, 14, 15, 19, 22, 25, 26, 27\},
\]

so \(|M' + M'| = |[1, 53] \setminus \{43, 50\}| = 51\) and \(|M' - M'| = |[-27, 27] \setminus \{\pm 9, \pm 16\}| = 51\). We show that by taking the union of translates of \(M'\) by non-negative integer multiples of its maximum element one can obtain arbitrarily large restricted-sum-difference balanced sets.

Lemma 10. Let \(k \geq 2\) and \(A_0 = A = \{0 = a_1 < a_2 < \cdots < a_k = m\} \subset \mathbb{Z}\) and \(A_i = A \cup (A + m) \cup \cdots \cup (A + im)\). Then

\[
|A_i + A_i| - |A_{i-1} + A_{i-1}| = c_1 \quad \forall i \geq 2,
\]

\[
|A_i + A_i| - |A_{i-1} + A_{i-1}| = c_1 \quad \forall i \geq 1
\]

and

\[
|A_i - A_i| - |A_{i-1} - A_{i-1}| = c_2 \quad \forall i \geq 1.
\]

where \(c_1\) and \(c_2\) are positive constants.
Proof. We first note

$$|A_i \uparrow A_i| - |A_{i-1} \uparrow A_{i-1}| = |(A_i \uparrow A_i) \setminus (A_{i-1} \uparrow A_{i-1})|$$

and show that the right-hand side is a constant by showing that the set of new elements introduced on each iteration is a translate of the set of new elements introduced on the previous iteration. We have

$$A_i \uparrow A_i = \bigcup_{r,s=0}^r ((A + rm) \uparrow (A + sm)).$$

If $|r - s| \geq 2$, it is clear that $A + rm$ and $A + sm$ are disjoint so their restricted sum is just their sum. If $i - 1 \geq r = s \geq 1$, then $(A + rm) \uparrow (A + rm) = (A + (r - 1)m) + (A + (r + 1)m)$. The only case needing a little thought is $|r - s| = 1$: without loss of generality, $r = s + 1$. Then

$$(A + (s + 1)m) \uparrow (A + sm) = \{a + b + (2s + 1)m : a + m \neq b\}$$

the only way we can have $a + m = b$ is if $a = 0, b = m$, but in this case

$$(0 + (s + 1)m) + (m + sm) = (m + (s + 1)m) \uparrow (0 + sm)$$

We deduce that, for all $i \geq 2$

$$A_i \uparrow A_i = (A \uparrow A) \cup (A + (A + m)) \cup \cdots \cup (A + A + (2i - 1)m) \cup (A \uparrow A + 2im).$$

Similarly

$$A_{i-1} \uparrow A_{i-1} = (A \uparrow A) \cup (A + A + m) \cup \cdots \cup (A \uparrow A + (2i - 2)m).$$

Now some elements of $(A + A + (2i - 2)m) \setminus (A \uparrow A + (2i - 2)m)$ may be in $A + A + (2i - 3)m$ and thus in $A_{i-1} \uparrow A_{i-1}$. (Translates of $A \uparrow A$ by less than $(2i - 3)m$ need not be considered). We have

$$(A_i \uparrow A_i) \setminus (A_{i-1} \uparrow A_{i-1}) = ((A + A + (2i - 2)m) \cup (A + A + (2i - 1)m) \cup (A \uparrow A + 2im)) \setminus ((A + A + (2i - 3)m) \cup (A \uparrow A + (2i - 2)m)).$$ (1)

Likewise

$$(A_{i+1} \uparrow A_{i+1}) \setminus (A_{i+1} \uparrow A_{i}) = ((A + A + 2im) \cup (A + A + (2i + 1)m) \cup (A \uparrow A + (2i + 2)m)) \setminus ((A + A + (2i + 1)m) \cup (A \uparrow A + (2i)m)).$$ (2)

The right-hand side of (2) is a translation of the right-hand side of (1) by $2m$. (To see this, note it is easy to check for sets of integers that if $C_i + 2m = C_{i+1}$ and $D_i + 2m = D_{i+1}$, then $(C_i \setminus D_i) + 2m = (C_{i+1} \setminus D_{i+1})$: apply this with the obvious choices of C_i and D_i). Thus

$$(A_{i+1} \uparrow A_{i+1}) \setminus (A_{i+1} \uparrow A_{i}) = ((A_i \uparrow A_i) \setminus (A_{i-1} \uparrow A_{i-1})) + 2m.$$
Since translation by a constant leaves the cardinality of the set difference unaltered it follows that
\[|(A_{i+1 } + A_{i+1 }) \setminus (A_i + A_i)| = |(A_i + A_i) \setminus (A_{i+1 } + A_{i+1 })| \]
as required.

To see that
\[|A_i + A_i | - |A_{i-1 } + A_{i-1 }| = |A_i + A_i | - |A_{i-1 } + A_{i-1 }| \]
for all \(i \geq 1 \) we show that the number of additional elements \(A_i + A_i \) contains is constant. All the elements of
\[(A + A) \setminus (A + A) \]
except for \(2m \), which is in \(A_i + A_i \) for \(i \geq 1 \) due to \(0+2m \), are excluded from \(A_i + A_i \) for all \(i \geq 1 \). Similarly the elements of
\[((A + A) \setminus (A + A) + 2im \]
extcept for \(2im \) are excluded from \(A_i + A_i \). This means that for all \(i \geq 1 \)
\[|A_i + A_i | - |A_i + A_i | = 2((A + A) \setminus (A + A) | - 1). \]

In other words the difference between the cardinalities of the sumset and the restricted sumset is a constant for all \(i \geq 1 \) and (3) holds.

To verify the claim for the difference set, write
\[A_i - A_i = \cup_{j=-i}^{i-1}(A + jm). \]
Thus we have
\[(A_i - A_i) \setminus (A_{i-1 } - A_{i-1 }) = (A - A - im) \cup (A - A + im) \setminus \bigcup_{j=-(i-1)}^{i-1}(A - A - jm). \]
But the only sets in \(\cup_{j=-1}^{i-1}(A - A - jm) \) which could intersect \((A - A - im) \) or \((A - A + im) \) are for \(j = (i-1), \ j = (i-2) \) (which will intersect \(A - A - im \) in precisely the one element \((1-i)m), \ j = -(i-2) \) (which will intersect it in precisely the one element \((i-1)m \) and \(j = -(i-1) \). Thus for all \(i \geq 1 \)
\[(A_i - A_i) \setminus (A_{i-1 } - A_{i-1 }) = (A - (A + im)) \setminus (A - (A + (i-1)m))) \]
\[\cup (A - A + im \setminus (A - A + (i-1)m))). \]
Similarly
\[(A_{i+1 } - A_{i+1}) \setminus (A_i - A_i) = (A - (A + (i+m))) \setminus (A - (A + im))) \]
\[\cup (A - A + (i+1)m \setminus (A - A + im))). \]
The sets \((A - (A + (i+1)m)) \setminus (A - (A + im))\) and \((A - A + (i+1)m) \setminus (A - A + im)\) are disjoint for all \(i \geq 1\). Also \((A - (A + (i+1)m)) \setminus (A - (A + im))\) is a translation of \((A - (A + im)) \setminus (A - (A + (i-1)m))\) by \(-m\) and \((A - A + (i+1)m) \setminus (A - A + im)\) is a translation of \((A - A + im) \setminus (A - A + (i-1)m)\) by \(m\). These translations leave the cardinalities of the sets unchanged, therefore
\[
|(A_{i+1} - A_{i+1}) \setminus (A_i - A_i)| = |(A_i - A_i) \setminus (A_{i-1} - A_{i-1})|
\]
and the overall result follows.

Setting \(M'_1 = M' \cup (M' + 27)\) we easily check
\[
|M'_1 + M'_1| = |[1, 107] \setminus \{97, 104\}| = |[-54, 54] \setminus \{\pm 36, \pm 43\}| = |M'_1 - M'_1|
\]
and \(M'_2 = M' \cup (M' + 27) \cup (M' + 54)\) gives
\[
|M'_2 + M'_2| = |[1, 161] \setminus \{151, 158\}| = |[-81, 81] \setminus \{\pm 63, \pm 70\}| = |M'_2 - M'_2|.
\]
It follows from Lemma 10 that

Corollary 11. There exist arbitrarily large restricted-sum-difference balanced subsets of \(\mathbb{Z}\).

Our final sequence of restricted-sum-dominant sets is constructed with a view to obtaining high values of \(f(A)\) as defined in the introduction. Again, this set is a modification of one in [9], which describes \(Q_j \setminus \{1 + 4(4j + 7)\}\) for \(j = 1, 2, 3\) as sets giving large sunset relative to the difference set. Including \(1 + 4(4j + 7)\) increases the sunset but does not change the difference set.

Theorem 12. Let
\[
Q_j = \{0, 2, 4, 12\} \cup \{1, 5, \ldots, 1 + 4(4j + 8)\} \cup \{24, 40, \ldots, 8 + 16j\}
\]
\[
\cup \{4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)\}
\]
for an integer \(j \geq 1\). Then
\[
Q_j + Q_j = [1, 1 + 4(8j + 16)]
\]
\[
\setminus \{8, 20, 32, 48(8j + 4), 4(8j + 8), 4(8j + 11), 4(8j + 14), 4(8j + 16)\}
\]
for \(j \geq 2\), whilst
\[
Q_j + Q_j = [0, 2 + 4(8j + 16)] \setminus \{20, 32, 4(8j + 8), 4(8j + 11)\}
\]
for \(j \geq 1\) and
\[
Q_j - Q_j = [-1 + 4(4j + 8)], 1 + 4(4j + 8)] \setminus \{6\}, \{14, \ldots, 14 + 16j\}, \{18, \ldots, 2 + 16j\}, \{26, \ldots, 10 + 16j\}, 6 + 16(j + 1)
\]
for \(j \geq 1\).
Proof. To verify these claims, consider elements of \(Q_j \) in terms of the union of
\[
Q_{\text{odd}} = \{1, 5, \ldots, 1 + 4(4j + 8)\}
\]
and
\[
Q_{\text{even}} = \{0, 2, 4, 12\} \cup \{24, \ldots, 8 + 16j\} \\
\setminus \{4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)\}.
\]
Firstly \(Q_j \cup Q_j \) contains all the odd numbers in the interval since we have
\[
(0) \uplus \{1, 5, \ldots, 1 + 4(4j + 8)\} = \{1, 5, \ldots, 1 + 4(4j + 8)\}
\]
\[
16(j + 2) \uplus \{1, 5, \ldots, 1 + 4(4j + 8)\} = \{1 + 4(4j + 8), 5 + 4(4j + 8), \\
\ldots, 1 + 4(8j + 16)\}
\]
\[
(2) \uplus \{1, 5, \ldots, 1 + 4(4j + 8)\} = \{3, 7, \ldots, 3 + 4(4j + 8)\}
\]
\[
14 + 16(j + 1) \uplus \{1, 5, \ldots, 1 + 4(4j + 8)\} = \{3 + 4(4j + 7), 7 + 4(4j + 7), \\
\ldots, 3 + 4(8j + 15)\}.
\]
The union of the right hand sides of the above is indeed
\[
\{1, 3, \ldots, 3 + 4(8j + 15), 1 + 4(8j + 16)\} = \{1, 3, \ldots, 1 + 2(4(4j + 8))\}.
\]
To see that the sumset contains all the even elements claimed, note first that
\(Q_{\text{odd}} \cup Q_{\text{odd}} \) gives the following elements congruent to 2 mod 4:
\[
Q_{\text{odd}} \cup Q_{\text{odd}} = \{6, 10, \ldots, 2 + 4(8j + 15)\} \subseteq Q_j \cup Q_j.
\]
Clearly 0 + 2 is also in \(Q_j \cup Q_j \), however whilst \(\max(Q_j + Q_j) = 2 + 4(8j + 16) \) this is not in the restricted sumset. As regards the multiples of four, clearly none of these can be obtained from \(Q_{\text{odd}} \cup Q_{\text{odd}} \) or \(Q_{\text{odd}} \cup Q_{\text{even}} \). To confirm the elements we claim to be excluded cannot be present note that \(Q_{\text{even}} \) is symmetric w.r.t. 16(j+2):
\[
Q_{\text{even}} = 16(j + 2) - Q_{\text{even}}. \text{ Hence } Q_{\text{even}} \uplus Q_{\text{even}} = 16(2j + 4) - (Q_{\text{even}} \uplus Q_{\text{even}}) \text{ and } \\
Q_{\text{even}} + Q_{\text{even}} = 16(2j + 4) - (Q_{\text{even}} + Q_{\text{even}}). \text{ The restricted sumset of the elements of } Q_{\text{even}} \text{ less than or equal to 32 is}
\]
\[
\{0, 2, 4, 12, 24\} \cup \{0, 2, 4, 12, 24\} = \{2, 4, 6, 12, 14, 16, 24, 26, 28, 36\}.
\]
Thus 0, 8, 20, 32 and 48 are excluded from \(Q_j \uplus Q_j \). Whilst \(Q_j + Q_j \) contains 0, 8 and 48 as the doubles of 0, 4 and 24 respectively, it is easy to check that neither 20 nor 32 are in \(Q_j + Q_j \). By symmetry
\[
16(2j + 4) - \{0, 8, 20, 32, 48\} = \{4(8j + 4), 4(8j + 8), 4(8j + 11), 4(8j + 14), 4(8j + 16)\}.
\]
which has empty intersection with \(Q_j \uplus Q_j \).
It remains to show that all other (relevant) multiples of 4 are in the (restricted) sumset; we consider the cases 0, 4, 8 and 12 modulo 16 separately. We have the following multiples of 16 in $Q_j + Q_j$:

$$\{24, 40, \ldots, 16j + 8\} + \{24, 40, \ldots, 16j + 8\} = \{64, 80, \ldots, 16(2j)\}$$

$$\quad (4 + 16(j + 1)) + (12 + 16(j + 1)) = 4(8j + 12) = 16(2j + 3).$$

Furthermore $Q_j + Q_j$ contains 48 and 16(2j + 1) = 2(16j + 8) and also 16(j + 2) + 16(j + 2) = 4(8j + 16) = 16(2j + 4). We already saw 16(2j + 2) = 4(8j + 8) is not in $Q_j + Q_j$.

We obtain those congruent to 4 modulo 16 from

$$\quad (12) + \{24, 40, \ldots, 16j + 8\} = \{36, 52, \ldots, 4 + 16(j + 1)\}$$

$$\quad (4) + (16(j + 2)) = 4 + 16(j + 2)$$

$$\quad (12 + 16(j + 1)) + \{24, \ldots, 8 + 16j\} = \{4 + 16(j + 3), \ldots, 4 + 16(2j + 2)\}$$

$$\quad (4 + 16(j + 1)) + (12 + 16(j + 2)) = 4 + 16(2j + 3).$$

The elements congruent to 8 modulo 16 are given by

$$\quad (0) + \{24, 40, \ldots, 8 + 16j\} = \{24, 40, \ldots, 8 + 16j\}$$

$$\quad (4) + (4 + 16(j + 1)) = 8 + 16(j + 1)$$

$$\quad (12) + (12 + 16(j + 1)) = 8 + 16(j + 2)$$

$$\quad (16(j + 2)) + \{24, 40, \ldots, 8 + 16j\} = \{8 + 16(j + 3), \ldots, 8 + 16(2j + 2)\}.$$

Also $(12 + 16(j + 1)) + (12 + 16(j + 1)) = 8 + 16(2j + 3) \in Q_j + Q_j$. Finally the elements congruent to 12 modulo 16 follow from

$$\quad (4) + \{24, \ldots, 8 + 16j\} = \{28, \ldots, 12 + 16j\}$$

$$\quad (0) + (12 + 16(j + 1)) = 12 + 16(j + 1)$$

$$\quad (4 + 16(j + 1)) + \{24, \ldots, 8 + 16j\} = \{12 + 16(j + 2), \ldots, 12 + 16(2j + 1)\}$$

$$\quad (12 + 16(j + 1)) + (16(j + 2)) = 12 + 16(2j + 3).$$

We now deal with the difference set. Again, it suffices to consider the non-negative differences. Since all the differences which we claim are excluded are even we need only consider differences of pairs of elements of Q_j of the same parity and therefore divide into cases accordingly. The non-negative elements of $Q_{odd} - Q_{odd}$ are

$$\{0, 4, \ldots, 4(4j + 8)\}.$$

The even elements of Q_j have the form

$$Q_{even} = \{0, 2, 4, 12, 8 + 16x, 4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)\}$$
where \(x \in \mathbb{Z} \) with \(1 \leq x \leq j \). The positive differences of the elements of \(Q_{\text{even}} \) are

\[
\{2, 4, 8, 10, 12, 12 + 16(x - 1), 4 + 16x, 6 + 16x, 8 + 16x, \\
12 + 16(j - x), 4 + 16(j - x + 1), 6 + 16(j - x + 1), 8 + 16(j - x + 1), \\
8 + 16j, 16(j + 1), 2 + 16(j + 1), 4 + 16(j + 1), 8 + 16(j + 1), \\
10 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)\}.
\]

Thus none of the differences in \(Q_j - Q_j \) have the form which we claim is excluded. To confirm the presence of the remaining differences we have that all the differences congruent to 1 modulo 4 are present since

\[
\{1, 5, \ldots, 1 + 4(4j + 8)\} - \{0\} = \{1, 5, \ldots, 1 + 4(4j + 8)\} \subseteq Q_j - Q_j.
\]

The elements congruent to 3 modulo 4 follow from

\[
\{1, 5, \ldots, 1 + 4(4j + 8)\} - \{2\} = \{-1, 3, \ldots, 3 + 4(4j + 7)\} \subseteq Q_j - Q_j.
\]

The multiples of 4 are obtained from

\[
\{1, 5, \ldots, 1 + 4(4j + 8)\} - \{1\} = \{0, 4, \ldots, 4(4j + 8)\}.
\]

For elements congruent to 2 mod 4, the only elements congruent to 2 mod 16 we are claiming to get are 2 and \(2 + 16(j + 1) \); 2 is clearly in, and \(2 + 16(j + 1) = 14 + 16(j + 1) - 12 \).

The elements congruent to 6 modulo 16 can be obtained from

\[
\{24, 40, \ldots, 8 + 16j\} - \{2\} = \{22, 38, \ldots, 6 + 16j\}.
\]

The only elements congruent to 10 mod 16 we are claiming are \(10 + 16(j + 1) = 12 + 16(j + 1) - 2 \) and \(10 = 12 - 2 \). Finally, the only element congruent to 14 mod 16 we claim is present is \(14 + 16(j + 1) \in Q_j \).

Corollary 13. For the set \(Q_j \) defined above we have

\[
|Q_j| = 5j + 17, |Q_j + Q_j| = 32j + 56 \text{ for } j \geq 2, |Q_j + Q_j| = 32j + 63 \text{ for } j \geq 1,
\]

\[
|Q_j - Q_j| = 26j + 61 \text{ for } j \geq 1
\]

(and \(|Q_1 + Q_1| = 90 \)). Thus \(Q_j \) is an restricted-sum-dominant set for all \(j \geq 1 \).

3. The Proportion of Restricted-Sum-Dominant Sets Is Strictly Positive

Martin and O’Bryant prove that for \(n \geq 15 \) the number of sum-dominant subsets of \([0, n - 1]\) is at least \((2 \times 10^{-7})2^n \) (see Theorem 1 of [5]). Their result has been
improved by Zhao [11] who shows that the proportion of sum-dominant sets tends
to a limit and that that limit is at least \(4.28 \times 10^{-4}\). In this section we will show that
the proportion of subsets of \(\{0, 1, 2, \ldots, n - 1\}\) which are restricted-sum-dominant is
bounded below by a much weaker constant. It may well be that Zhao’s techniques,
or others, can be modified to improve the result but at least a substantial piece
of computation would appear to be required and our concern at present is simply
to show that a positive proportion of sets are restricted-sum-dominant sets. Note
that the fact that a positive proportion of sets have more differences than restricted
sums is an immediate consequence of Theorem 14 in [5]. Many lemmas etc. in what
follows are very slight modifications of corresponding results in [5] and we merely
present these proofs without further comment. However the construction of the two
‘fringe sets’ \(U\) and \(L\) is notably more involved.

Lemma 14. Let \(n, \ell\) and \(u\) be integers such that \(n \geq \ell + u\). Fix \(L \subseteq [0, \ell - 1]\) and
\(U \subseteq [n - u, n - 1]\). Suppose \(R\) is a uniformly randomly selected subset of \([\ell, n - u - 1]\)
(where each element is chosen with probability \(1/2\)) and set \(A = L \cup R \cup U\). Then
for every integer \(k\) satisfying \(2\ell - 1 \leq k \leq n - u - 1\), we have
\[
\mathbb{P}(k \notin A^\dagger A) = \begin{cases}
\left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{(k+1)/2-\ell}, & \text{if } k \text{ is odd,} \\
\left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{k/2-\ell}, & \text{if } k \text{ is even.}
\end{cases}
\]

Proof. Define an indicator variable
\[
X_j = \begin{cases}
1, & \text{if } j \in A, \\
0, & \text{otherwise.}
\end{cases}
\]
Since \(A = L \cup R \cup U\) the \(X_j\) are independent random variables for \(\ell \leq j \leq n - u - 1\),
each taking values 0 or 1 equiprobably. For \(0 \leq j \leq \ell - 1\) and \(n - u \leq j \leq n - 1\)
the values of \(X_j\) are dictated by the choices of \(L\) and \(U\).

Now, \(k \notin A^\dagger A\) if and only if \(X_jX_{k-j} = 0\) for all \(0 \leq j \leq k/2 - 1\). \((j = k/2\)
would not give a restricted sum). The random variables \(X_jX_{k-j}\) for \(0 \leq j \leq k/2\)
are independent of each other. Hence
\[
\mathbb{P}(k \notin A^\dagger A) = \prod_{0 \leq j \leq k/2 - 1} \mathbb{P}(X_jX_{k-j} = 0).
\]
When \(k\) is odd we have
\[
\mathbb{P}(k \notin A^\dagger A) = \prod_{j=0}^{\ell-1} \mathbb{P}(X_jX_{k-j} = 0) \prod_{j=\ell}^{(k-1)/2} \mathbb{P}(X_jX_{k-j} = 0)
= \prod_{j \in L} \mathbb{P}(X_{k-j} = 0) \prod_{j=\ell}^{(k-1)/2} \mathbb{P}(X_j = 0 \text{ or } X_k-j = 0)
= \left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{(k+1)/2-\ell}.
\]
When \(k \) is even

\[
\mathbb{P}(k \notin A^\hat{\omega}) = \prod_{j=0}^{\ell-1} \mathbb{P}(X_j X_{k-j} = 0) \prod_{j=\ell}^{k/2-1} \mathbb{P}(X_j X_{k-j} = 0) \\
= \prod_{j \in L} \mathbb{P}(X_{k-j} = 0) \prod_{j=\ell}^{k/2-1} \mathbb{P}(X_j = 0 \text{ or } X_{k-j} = 0) = \left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{k/2-\ell}.
\]

\(\square \)

Lemma 15. Let \(n, \ell, u, L, U, R \) and \(A \) be defined as in Lemma 14. Then for every integer \(k \) satisfying \(n + \ell - 1 \leq k \leq 2n - 2u - 1 \), we have

\[
\mathbb{P}(k \notin A^\hat{\omega}) = \begin{cases}
\left(\frac{1}{4}\right)^{|U|} \left(\frac{3}{4}\right)^{n-(k+1)/2-u}, & \text{if } k \text{ is odd}, \\
\left(\frac{1}{4}\right)^{|U|} \left(\frac{3}{4}\right)^{n-1-k/2-u}, & \text{if } k \text{ is even}.
\end{cases}
\]

Proof. This is similar to the previous lemma, but we consider different intervals for the summands. For \(k \) odd, we have

\[
\mathbb{P}(k \notin A^\hat{\omega}) = \prod_{j=(k+1)/2}^{n-u-1} \mathbb{P}(X_j X_{k-j} = 0) \prod_{j=n-u}^{n-1} \mathbb{P}(X_j X_{k-j} = 0) \\
= \prod_{j=(k+1)/2}^{n-u-1} \mathbb{P}(X_j = 0 \text{ or } X_{k-j} = 0) \prod_{j \in U} \mathbb{P}(X_{k-j} = 0) \\
= \left(\frac{3}{4}\right)^{n-(k+1)/2-u} \left(\frac{1}{2}\right)^{|U|}.
\]

For \(k \) even, as \(k = k/2 + k/2 \) is forbidden,

\[
\mathbb{P}(k \notin A^\hat{\omega}) = \prod_{j=k/2+1}^{n-u-1} \mathbb{P}(X_j X_{k-j} = 0) \prod_{j=n-u}^{n-1} \mathbb{P}(X_j X_{k-j} = 0) \\
= \prod_{j=k/2+1}^{n-u-1} \mathbb{P}(X_j = 0 \text{ or } X_{k-j} = 0) \prod_{j \in U} \mathbb{P}(X_{k-j} = 0) \\
= \left(\frac{3}{4}\right)^{n-1-k/2-u} \left(\frac{1}{2}\right)^{|U|}.
\]

\(\square \)

Proposition 16. Let \(n, \ell \) and \(u \) be integers such that \(n \geq \ell + u \). Fix \(L \subseteq [0, \ell - 1] \) and \(U \subseteq [n - u, n - 1] \). Suppose \(R \) is a uniformly randomly selected subset of \([\ell, n - u - 1]\) (where each element is chosen, independently of all other elements,
with probability 1/2) and set $A = L \cup R \cup U$. Then for every integer k satisfying $2\ell - 1 \leq n - u - 1$,

$$P([2\ell - 1, n - u - 1] \cup [n + \ell - 1, 2n - 2u - 1] \subseteq A^\perp A) > 1 - 8(2^{-|L|} + 2^{-|U|}).$$

Proof. We crudely estimate

$$P([2\ell - 1, n - u - 1] \cup [n + \ell - 1, 2n - 2u - 1] \not\subseteq A^\perp A)
\leq \sum_{k=2\ell-1}^{n-u-1} P(k \notin A^\perp A) + \sum_{k=n+\ell-1}^{2n-2u-1} P(k \notin A^\perp A).$$

The left summation of the line above can be bounded using Lemma 14:

$$\sum_{k=2\ell-1}^{n-u-1} P(k \notin A^\perp A) < \sum_{k \geq 2\ell-1 \atop k \text{ odd}} \left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{(k+1)/2 - \ell} + \sum_{k \geq 2\ell-1 \atop k \text{ even}} \left(\frac{1}{2}\right)^{|L|} \left(\frac{3}{4}\right)^{k/2 - \ell}
= \left(\frac{1}{2}\right)^{|L|} \sum_{m=0}^{\infty} \left(\frac{3}{4}\right)^m + \left(\frac{1}{2}\right)^{|L|} \sum_{m=0}^{\infty} \left(\frac{3}{4}\right)^m
= 8 \left(\frac{1}{2}\right)^{|L|}.$$

The summation on the right can be bounded similarly, using Lemma 15, to give

$$\sum_{k=n+\ell-1}^{2n-2u-1} P(k \notin A^\perp A) < 8 \left(\frac{1}{2}\right)^{|U|}.$$

Thus $P([2\ell, n - u - 1] \cup [n + \ell - 1, 2n - 2u - 1] \subseteq A^\perp A)$ is bounded above by $8((1/2)^{|L|} + (1/2)^{|U|})$, which is equivalent to the claim of Proposition 16.

We now come to the main result. Whilst the respective lower and upper fringes $U = \{0, 2, 3, 7, 8, 9, 10\}$ and $L = \{n - 11, n - 10, n - 9, n - 8, n - 6, n - 3, n - 2, n - 1\}$ used by Martin and O’Bryant are sufficient for the sum-dominant case these fall some way short of what is required for a restricted-sum-dominant result. However we can again use Spohn’s idea of repeating interior blocks. After a few iterations we get the new fringes, which we shall henceforth refer to as L and U, to fit with the earlier lemmas. Thus from now on

$$L = \{0, 2, 3, 7, 9, 10, 14, 16, 17, 21, 23, 24, 28, 30, 31, 35, 37, 38, 42, 44, 45, 49, 51, 52, 56, 57, 58, 59, 60\},$$

$$U = n - \{59, 58, 57, 55, 52, 51, 50, 48, 45, 44, 43, 41, 38, 37, 36, 34, 31, 30, 29, 27, 24, 23, 22, 20, 17, 16, 15, 13, 10, 9, 8, 6, 3, 2, 1\}.$$

Theorem 17. For $n \geq 120$, the number of restricted-sum-dominant subsets of $[0, n - 1]$ is at least $(7.52 \times 10^{-37})2^n$.
Proof. With L and U as just defined, one can check that
\[
U - L = [n - 119, n - 1] \setminus \{n - 7, n - 14, n - 21, n - 28, n - 35, n - 42, n - 49, n - 56\}.
\]
Now since $n - 7, n - 14, n - 21, n - 28, n - 35, n - 42, n - 49, n - 56 \notin U - L$ it follows that
\[
\pm(n - 7), \pm(n - 14), \pm(n - 21), \pm(n - 28), \pm(n - 35), \pm(n - 42), \pm(n - 49), \pm(n - 56) \notin A - A \subseteq \{-n, -1, 1, n\}.
\]
With eight pairs of differences excluded from $A - A$ we have $|A - A| \leq 2n - 17$. On the other hand one can check
\[
L \uparrow L = [0, 120] \setminus \{0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120\}
\]
\[
U \uparrow L = U + L = [n - 59, n + 59]
\]
\[
U \uparrow U = [2n - 118, 2n - 2] \setminus \{2n - 118, 2n - 6, 2n - 2\}.
\]
Hence for $120 \leq n \leq 178$ we have that $A \uparrow A$ contains
\[
[0, 2n - 2] \setminus \{0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120, 2n - 118, 2n - 6, 2n - 2\}
\]
so that $|A \uparrow A| \geq 2n - 16$. There are $n - 120$ numbers between 61 and $n - 60$ inclusive. Therefore the number of such A is 2^{n-120}.

For $n \geq 178$ applying Proposition 16 with $\ell = 61$ and $u = 59$ implies that when A is chosen uniformly randomly from all such sets, the probability that $A \uparrow A$ contains $[61, n - 60] \cup [n + 60, 2n - 119]$ is at least
\[
1 - 8(2^{-|L|} + 2^{-|U|}) = 1 - 8(2^{-29} + 2^{-35}) = \frac{4294967231}{4294967296}.
\]
That is, there are at least $2^{n-120} \frac{4294967231}{4294967296} > (7.52 \times 10^{-37})2^n$ such sets A with $A \uparrow A = [0, 2n - 2] \setminus \{0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120, 2n - 118, 2n - 6, 2n - 2\}$, whilst at the same time eight pairs of differences are excluded from $A - A$. Thus all such sets A are restricted-sum-dominant sets.

Martin and O’Bryant’s Lemma 7 and Theorem 16 for a subset S of an arithmetic progression of length n can also be adapted to give the following result.

Theorem 18. Given a subset S of an arithmetic progression P of length n for every positive integer n, we have
\[
\sum_{S \subseteq P} |S \uparrow S| = 2^n(2n - 15) + \begin{cases} 26 \cdot 3^{(n-1)/2}, & \text{if } n \text{ is odd}, \\ 15 \cdot 3^{n/2}, & \text{if } n \text{ is even}. \end{cases}
\]

Thus $\frac{1}{|P|} \sum_{S \subseteq P} |S \uparrow S| \sim 2n - 15$. This combined with Martin and O’Bryant’s Theorem 3, that $\frac{1}{|P|} \sum_{S \subseteq P} |S - S| \sim 2n - 7$ gives that on average the difference set has eight elements more than the restricted subset. Details will appear in [10].
4. How Much Larger Can the Sun Set Be?

As in Section 4 of [3] we consider this question in terms of \(f(A) = \ln|A+A|/\ln|A-A| \) (and the analogous quantity \(f(A) = \ln|A+A|/\ln|A-A| \)). It is known – see, e.g., [1] – that \(\frac{2}{3} \leq f(A) \leq \frac{4}{3} \). The reason for considering the ratio of logarithms rather than (say) the ratio is explained in [3] in terms of the base expansion method. Some authors, e.g., Granville in [2], prefer to use \(g(A) = \ln(|A+A|)/\ln(|A-A|) \) for which the analogous bounds are \(1/2 \leq g(A) \leq 2 \).

Hegarty’s set \(A_{15} \) is easily checked to have \(f(A_{15}) = 1.0208 \ldots \), which is often quoted as the largest known value of \(f(A) \). In fact, the set \(X \) (our \(T_2 \)) which Hegarty uses to write \(A_{15} = X \cup (X + 20) \) already does fractionally better:

Lemma 19. Let \(X = \{0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25\} \). Then \(X + X = [0, 50] \) but \(X - X = [-25, 25] \setminus \{\pm 6, \pm 14\} \). Thus \(f(X) = \ln(51)/\ln(47) \simeq 1.0212 \).

Proof. This is just a short calculation.

We do better than either of these using the sets \(Q_j \) at the end of Section 2.

Theorem 20. There is a set \(A \) of integers for which

\[
f(A) = \frac{\ln(|A+A|)}{\ln(|A-A|)} \simeq 1.030597781 \ldots
\]

and another set \(B \) of integers for which

\[
\hat{f}(B) = \frac{\ln(|B+B|)}{\ln(|B-B|)} \simeq 1.028377107 \ldots
\]

Proof. Take \(A = Q_{10} \) for the first claim and \(A = Q_{19} \) for the second claim.

It is easy to check that neither any other \(Q_j \), nor any of the \(T_j, T'_j, M_j \) or \(R_j \) give better results than the two \(Q_j \)'s listed above.

The function \(g \) has a slightly different behaviour, as it is monotone increasing as \(j \) increases in our sequences. The result here is

Theorem 21. Given \(\varepsilon > 0 \), there is a set \(C \) of integers for which

\[
g(C) = \frac{\ln(|C+C|/|C|)}{\ln(|C-C|/|C|)} > \frac{\ln(32/5)}{\ln(26/5)} - \varepsilon \simeq 1.125944426
\]

Proof. Take \(Q_j \) for \(j \) sufficiently large.

(For comparison, \(g(A_{15}) \simeq 1.0717 \). The corresponding suprema are \(\ln(16/3)/\ln(14/3) \simeq 1.0867 \) for both \((g(T'_j)) \) and \((g(T_j)) \), \(\ln(23/4)/\ln(11/2) \simeq 1.0261 \) for \((g(R_j)) \) and \(\ln(11/2)/\ln(5) \simeq 1.0592 \) for \((g(M_j)) \). None of these do as well as the supremum for the \((Q_j) \).)
Note also that because the sumsets and restricted sumsets in each of our families T_j', T_j, M_j, R_j and Q_j only differ in order by a constant, the function

$$\hat{g}(A) = \frac{\ln(|A-A|/|A|)}{\ln(|A-A|/|A|)}$$

will give similar insights to g.

5. The Smallest Order of a Restricted-Sum-Dominant Set

We noted above that we have two restricted-sum-dominant sets of order 16, namely T_2' and M_2: we know of no smaller examples. In this section we reduce the range in which the smallest restricted-sum-dominant set can be.

Hegarty ([3], Theorem 1) proves that no 7-element subset of the integers is sum-dominant, and that up to linear transformations Conway’s set is the unique 8-element sum-dominant subset of \mathbb{Z}. As Conway’s set is not a restricted-sum-dominant set there is no 8-element restricted-sum-dominant set of integers.

Further Hegarty finds all 9-element sum-dominant sets A of integers with the additional property that for some $x \in A+A$ there are at least four ordered pairs $(a,a') \in A \times A$ with $a+a' = x$. There are, up to linear transformations, 9 such sets, listed in [3] as A_2 and A_4 through to A_{11}. It is easy to check that none of these nine sets is restricted-sum-dominant.

Thus, the only possible 9-element restricted-sum-dominant sets of integers have the property that for every $x \in A+A$ there are fewer than four ordered pairs (a,a') such that $x = a+a'$. This condition implies that there is no solution of $x+y = u+v$ with x,y,u,v all distinct, so such a set is a weak Sidon set in the sense of Ruzsa [8].

Defining $\delta(n)$ for $n \in A-A$ to be the number of ordered pairs (x,y) such that $x+y = n$, it is shown in the proof of Theorem 4.7 in [8] that for a weak Sidon set, $\delta(n) \leq 2$ whenever $n \neq 0$ and at most $2|A|$ elements n have $\delta(n) = 2$.

Thus, noting 0 has $|A| = 9$ representations and putting $m = |A-A|$, \[81 \leq 9 + (2 \times 9) \times 2 + (m - 19) \Rightarrow m \geq 55\]

so if such a set were to be sum-dominant its sumset would have to have order at least 56. But of course $|A+A| \leq 9 \times 10/2 = 45$, and we have proven

Theorem 22. All sum-dominant sets of integers of order 9 are linear transformations of one of Hegarty’s nine sets A_2 and A_4 to A_{11}. None of these is restricted-sum-dominant, so there is no restricted-sum-dominant set of order 9.

We thus know that the smallest restricted-sum-dominant set of integers has order between 10 and 16. It appears a non-trivial computational challenge to find the order of the smallest restricted-sum-dominant set.
References

