EIGENVALUES AND ARITHMETIC FUNCTIONS ON PSL$_2(\mathbb{Z})$

Andrew Ledoan
Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee
andrew-ledoan@utc.edu

Paul Spiegelhalter
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois
spiegel3@illinois.edu

Alexandru Zaharescu
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois
zaharesc@illinois.edu

Received: 11/26/12, Revised: 5/14/13, Accepted: 2/13/14, Published: 3/7/14

Abstract
Over the past decade, various properties of the irrational factor function $I(n) = \prod_{p^r || n} p^{1/r}$ and strong restrictive factor function $R(n) = \prod_{p^r || n} p^{r-1}$ have been investigated by several authors. This study led to a generalization to a class of arithmetic functions associated to elements of PSL$_2(\mathbb{Z})$. In the present paper, we study the possible influence of the eigenvalues of an element A of PSL$_2(\mathbb{Z})$ on the behavior of the associated arithmetic function $f_A(n) = \prod_{p^r || n} p^{A(r)}$, where $A(z) = (az+b)/(cz+d)$ is the linear fractional transformation induced by the matrix A. In particular, we obtain results on the local density of eigenvalues through their natural connection to a particular surface.

1. Introduction and Statement of Results

There has been recent interest in examining the behavior of the arithmetic functions $f_A(n)$ defined on natural numbers n in terms of the action of a matrix A in PSL$_2(\mathbb{Z})$. Given an element

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
of $\text{PSL}_2(\mathbb{Z})$, one may consider the linear fractional transformation induced by A,

$$A(z) = \frac{az + b}{cz + d},$$

and define the arithmetic function given for each positive integer n by

$$f_A(n) = \prod_{p^\nu || n} p^{A(\nu)}.$$

These functions generalize the two arithmetic functions

$$I(n) = \prod_{p^\nu || n} p^{1/\nu}$$

and

$$R(n) = \prod_{p^\nu || n} p^{\nu - 1},$$

which were introduced by Atanassov in [2] and [3]. These multiplicative functions satisfy the inequality

$$I(n)R(n)^2 \geq n,$$

for each $n \geq 1$, with equality if and only if n is square-free. If $S(n)$ denotes the square-free part of n and if n is k-power free, then $S(n)$ satisfies the inequalities

$$S(n) \geq n^{1/(k-1)}$$

and

$$I(n) \geq S(n)^{1/(k-1)} \geq n^{1/(k-1)^2}.$$

On the other hand, if n is k-power full, then $S(n)$ satisfies the inequality

$$I(n) \leq S(n)^{1/k}.$$

In this fashion, $I(n)$ roughly measures how far a given integer n is away from being either k-power free or k-power full.

In [11], two of the authors more fully develop this measure by studying weighted combinations $I(n)^\alpha R(n)^\beta$ for real-valued α and β. In [10], Panaitopol showed that

$$\sum_{n=1}^{\infty} \frac{1}{I(n)R(n)\varphi(n)} < e^2.$$

He further proved that the arithmetic function

$$G(n) = \prod_{\nu=1}^{n} I(\nu)^{1/n}$$
satisfies the inequalities
\[\frac{n}{e^2} < G(n) < n, \]
for each \(n \geq 1 \). Alkan and two of the authors [1] established an asymptotic formula for \(G(n) \) and proved that the sequence \(\{G(n)/n\}_{n \geq 1} \) is convergent. They further obtained results that show that \(I(n) \) is very regular on average. Further improvements have recently been obtained by Koinic and Kátai [7]. Asymptotic formulas for certain weighted real moments of \(R(n) \) were obtained in [9].

In the above more general setting, one realizes \(I(n) \) and \(R(n) \) as \(f_{A_1}(n) \) and \(f_{A_2}(n) \), respectively, with
\[
A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
and
\[
A_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.
\]
Results on averages of \(f_A(n) \) have recently been established in [12]. That work generalizes \(I(n) \) and \(R(n) \) to a class of elements of \(\text{PSL}_2(\mathbb{Z}) \) and explores some of the properties of these maps.

For each given matrix \(A \) and a positive real number \(x \), we define the weighted average
\[
M_A(x) = \sum_{1 \leq n \leq x} \left(1 - \frac{n}{x} \right) f_A(n).
\]
We also consider \(\lambda_A^+ \) and \(\lambda_A^- \), the positive and negative real eigenvalues of \(A \), respectively. Thus, \(\lambda_A^+ \) and \(\lambda_A^- \) are solutions of the quadratic equation
\[
\lambda^2 - \text{tr}(A) \lambda + \det(A) = 0,
\]
with
\[
\lambda_A^+ = \frac{a + d + \sqrt{(a + d)^2 + 4}}{2}
\]
and
\[
\lambda_A^- = \frac{a + d - \sqrt{(a + d)^2 + 4}}{2}. \tag{1}
\]
Furthermore, \(\lambda_A^+ \) and \(\lambda_A^- \) satisfy the inequalities \(\lambda_A^- < 0 < \lambda_A^+ \) and the identity \(\lambda_A^+ \lambda_A^- = -1 \).

In the present paper, for a large \(Q \) and a much larger \(x \), we consider the following subset of \(\text{PSL}_2(\mathbb{Z}) \):
\[
\mathcal{A}(Q, x) = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : 1 \leq a, b, c, d \leq Q, ad - bc = -1, \right. \\
\left. \left(\frac{\lambda_A^+}{Q}, Q\lambda_A^-, \frac{\log M_A(x)}{\log x} \right) \in \mathcal{S} \right\},
\]
where the surface S is given by

$$S = \{(x, y, z) \in \mathbb{R}^3 : 1 < x, z < 2, xy = -1\}.$$

(See Figure 1.)

The map

$$\Psi_{Q, x} : A(Q, x) \rightarrow S,$$

defined by

$$\Psi_{Q, x}(A) = \left(\frac{\lambda^+ A}{Q}, Q \lambda^- A, \frac{\log M_A(x)}{\log x}\right),$$

associates to each matrix $A \in A(Q, x)$ a unique point on S. In the first and second coordinates of such a point on S, the eigenvalues λ^+_A and λ^-_A of A are normalized,
as λ_A^+ is divided by Q and λ_A^- is multiplied by Q. Furthermore, λ_A^+ is close to $a + d$, which can be $2Q$ at most. It follows that $\lambda_A^+/Q < 2$, with very few exceptions.

For the sake of simplicity, we restrict our attention to the case when λ_A^+/Q is in the interval $(1, 2)$ and leave to the reader to make the adaptation to the case when λ_A^+/Q is in the interval $(0, 1)$, as the two cases are similar.

In the third coordinate of such a point on S, we observe that for any A with positive entries, $f_A(n) \geq 1$ for all n. It follows that $M_A(x) > x/2$. Hence,

$$\frac{\log M_A(x)}{\log x} > 1 - \frac{\log 2}{\log x}.$$

Finally, for simplicity’s sake, we consider only the case when z is in the interval $(1, 2)$. In like manner, one can study the case when z is in the interval $(2, \infty)$.

In the present paper, our purpose is to investigate the possible influence of the eigenvalues λ_A^+ and λ_A^- of A on the behavior of the associated arithmetic function $f_A(n)$. We seek to understand the joint distribution of λ_A^+, λ_A^-, and $(\log M_A(x))/\log x$, that is to say, the image of $\Psi_{Q,x}$ on S. More precisely, for a given point $(\alpha, -1/\alpha, \beta)$ on S we consider, for each small $\delta > 0$, the neighborhood $V_{\alpha,\beta,\delta}$ of $(\alpha, -1/\alpha, \beta)$ in S given by

$$V_{\alpha,\beta,\delta} = \{(x, y, z) \in S: |x - \alpha| < \delta, |z - \beta| < \delta\}.$$

We would like to estimate the number of matrices A in $A(Q, x)$ for which $\Psi_{Q,x}(A)$ lies in $V_{\alpha,\beta,\delta}$. We expect the number of such matrices to grow like a constant times δ^2Q^2 as Q and x tend to infinity, with x much larger than Q, while $\delta > 0$ is kept fixed. This leads us to consider the limit of the ratio

$$\frac{\#\left\{\Psi_{Q,x}^{-1}(V_{\alpha,\beta,\delta})\right\}}{\delta^2Q^2} = \frac{\#\{A \in A(Q, x): \Psi_{Q,x}(A) \in V_{\alpha,\beta,\delta}\}}{\delta^2Q^2},$$

as x approaches infinity and then Q approaches infinity. Lastly, we take the limit of this expression as $\delta \to 0^+$.

Our main result can be summarized as follows.

Theorem. Fix a point $(\alpha, -1/\alpha, \beta) \in S$, where α and β are real numbers such that $1 < \alpha, \beta < 2$. Then we have

$$\lim_{\delta \to 0} \lim_{Q \to \infty} \lim_{x \to \infty} \frac{\#\{A \in A(Q, x): \Psi_{Q,x}(A) \in V_{\alpha,\beta,\delta}\}}{\delta^2Q^2} = \begin{cases} \frac{24}{\pi^2} \left(\frac{\beta - \alpha}{\beta - 1}\right), & \text{if } \beta \geq \alpha; \\ 0, & \text{if } \beta < \alpha. \end{cases}$$

Thus, the images via $\Psi_{Q,x}$ of almost all matrices A lie on the part of the surface S where $z \geq x$, depicted in blue in Figure 1. If we fix two points $P_1 = (\alpha_1, -1/\alpha_1, \beta_1)$ and $P_2 = (\alpha_2, -1/\alpha_2, \beta_2)$ on that part of the surface S and compare the local densities of the points in $\Psi_{Q,x}(A(Q, x))$ around P_1 and respectively P_2, as a direct consequence of our theorem we deduce the following corollary.
Corollary. Let α_j and β_j be real numbers such that $1 < \alpha_j < \beta_j < 2$ for $j \in \{1, 2\}$. Then we have
\[
\lim_{\delta \to 0} \lim_{Q \to \infty} \lim_{x \to \infty} \# \{ A \in \mathcal{A}(Q,x) : \Psi_{Q,x}(A) \in \mathcal{V}_{\alpha_1,\beta_1,\delta} \} = (\beta_1 - \alpha_1)(\beta_2 - 1) - (\beta_1 - \alpha_1)(\beta_2 - \alpha_2)(\beta_1 - 1).
\]

2. Proof of the Theorem

We begin the proof by fixing an α and β in the interval $(1,2)$ and a $\delta > 0$ small enough so that α and β belong to the interval $(1+\delta, 2-\delta)$. We also consider the set of matrices
\[
\mathcal{D}_{\alpha,\beta,\delta,Q,x} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{A}(Q,x) : 1 \leq a, b, c, d \leq Q, \quad ad - bc = -1, \quad (\alpha - \delta)Q \leq a + d \leq (\alpha + \delta)Q, \quad (\beta - 1 - \delta)d < b < (\beta - 1 + \delta)d \right\}.
\]

The cardinality of $\mathcal{D}_{\alpha,\beta,\delta,Q,x}$ is given by
\[
\# \mathcal{D}_{\alpha,\beta,\delta,Q,x} = \sum_{1 \leq d \leq Q} \sum_{1 \leq c \leq d} \sum_{\gcd(c,d) = 1} \# \{(a, b) : 1 \leq a, b \leq d, \quad ad - bc = -1, \quad (\alpha - \delta)Q \leq a + d \leq (\alpha + \delta)Q, \quad (\beta - 1 - \delta)d < b < (\beta - 1 + \delta)d\}
\]
\[
= \sum_{1 \leq d \leq Q} \sum_{1 \leq c \leq d} \sum_{\gcd(c,d) = 1} 1,
\]

where c is used to denote the unique multiplicative inverse of c modulo d in the interval $[1,d]$. The second step in (3) follows from the fact that the conditions $1 \leq b \leq d$ and $ad - bc = -1$ force b to equal c. Hence, a is uniquely determined and given by $a = (bc - 1)/d$. Furthermore, the contribution of the terms in (3) for which $d < (\alpha - \delta)Q/2$ is zero. Indeed, since $a \leq d$, we see that if $d < (\alpha - \delta)Q/2$, then $a + d < (\alpha - \delta)Q$.

Hence, setting $q = d$, $x = c$ and $y = \bar{c}$, we obtain $\# \mathcal{D}_{\alpha,\delta,Q}$ in the form
\[
\# \mathcal{D}_{\alpha,\beta,\delta,Q,x} = \sum_{(\alpha - \delta)Q/2 \leq q \leq Q} \# \{(x, y) : (x, y) \in \Omega_{\alpha,\beta,\delta,Q,q} \cap \mathbb{Z}^2 : xy = 1 \mod q\},
\]
where
\[
\Omega_{\alpha,\beta,\delta,Q,q} = \{(u, v) \in \mathbb{R}^2 : 1 \leq u, v \leq q, \quad (\alpha - \delta)qQ - q^2 \leq uv \leq (\alpha + \delta)qQ - q^2, \quad (\beta - 1 - \delta)q \leq v \leq (\beta - 1 + \delta)q\}.
\]
We estimate the summand in (4) by using a lemma due to Boca and Gologan [5].

Lemma 1 (Lemma 2.3 from [5]). Assume that \(q \geq 1 \) and \(h \) are two integers, that \(I \) and \(J \) are intervals of length less than \(q \), and that \(f: I \times J \to \mathbb{R} \) is a \(C^1 \) function. Then for any integer \(T > 1 \) and any \(\epsilon > 0 \), we have

\[
\sum_{a \in I, b \in J} f(a, b) = \frac{\phi(q)}{q^2} \int_{I} \int_{J} f(x, y) \, dx \, dy + \mathcal{E},
\]

with

\[
\mathcal{E} = O_\epsilon \left(T^2 \|f\|_\infty^{1/2+\epsilon} \gcd(h, q)^{1/2} + T \|\nabla f\|_\infty \|f\|_\infty^{3/2+\epsilon} \gcd(h, q)^{1/2} + \frac{\|\nabla f\|_\infty |I||J|}{T} \right),
\]

where \(\phi(q) \) is the Euler totient function, \(\|f\|_\infty \) and \(\|\nabla f\|_\infty \) denote the sup-norm of \(f \) and \(|\partial f/\partial x| + |\partial f/\partial y| \) on the region \(I \times J \), respectively.

We break the region \(\Omega_{\alpha, \beta, \delta, q} \) into squares of side length \(L = [Q^\eta] \) for some \(0 < \eta < 1 \), and denote by \(I_j \) those squares lying entirely within \(\Omega_{\alpha, \beta, \delta, q} \) and \(B_i \) those squares which intersect both \(\Omega_{\alpha, \beta, \delta, q} \) and its complement in \(\mathbb{R}^2 \), where \(1 \leq j \leq n \) and \(1 \leq i \leq m \) for some natural numbers \(n \) and \(m \). We have

\[
\# \{ (u, v) \in \Omega_{\alpha, \beta, \delta, q} : ab \equiv 1 \text{ (mod } q) \} = \sum_{1 \leq j \leq n} \# \{ (u, v) \in I_j : ab \equiv 1 \text{ (mod } q) \} + \sum_{1 \leq i \leq m} \# \{ (u, v) \in B_i \cap \Omega_{\alpha, \beta, \delta, q} : ab \equiv 1 \text{ (mod } q) \}.
\]

By Lemma 1, each of the summands on the right-hand side above is equal to

\[
\frac{\phi(q)}{q^2} L^2 + O_\epsilon (q^{1/2+\epsilon}).
\]

If we take \(\Omega' \) to be the subset of \(\Omega_{\alpha, \beta, \delta, q} \) formed by removing from \(\Omega_{\alpha, \beta, \delta, q} \) an \(L\sqrt{2} \)-width neighborhood of the boundary of \(\Omega_{\alpha, \beta, \delta, q} \), then we find that \(\Omega' \subset \bigcup I_j \subset \Omega_{\alpha, \beta, \delta, q} \) and

\[
\text{Area} (\Omega_{\alpha, \beta, \delta, q}) - \text{Area}(\Omega') = O(qL).
\]

Hence,

\[
\text{Area} \left(\bigcup I_j \right) = \text{Area}(\Omega_{\alpha, \beta, \delta, q}) + O(QL).
\]

Since

\[
\text{Area} \left(\bigcup I_j \right) = \sum_{1 \leq j \leq n} \# \{ (u, v) \in I_j : ab \equiv 1 \text{ (mod } q) \} = n \frac{\phi(q)}{q^2} L^2 + O_\epsilon (nq^{1/2+\epsilon}),
\]
we have
\[nL^2 = \text{Area}(\Omega_{\alpha,\beta,\delta,Q,q}) + O(QL), \]
and in particular
\[n = O\left(\frac{Q^2}{L^2}\right). \]

Thus,
\[
\sum_{1 \leq j \leq n} \# \{(u, v) \in I_j : ab \equiv 1 \pmod{q}\} = n \frac{\phi(q)}{q^2} L^2 + O_\epsilon(nq^{1/2+\epsilon})
\]
\[
= \frac{\phi(q)}{q^2} (\text{Area}(\Omega_{\alpha,\beta,\delta,Q,q}) + O(QL))
\]
\[
+ O_\epsilon\left(\frac{Q^2}{L^2} q^{1/2+\epsilon}\right)
\]
\[
= \frac{\phi(q)}{q^2} \text{Area}(\Omega_{\alpha,\beta,\delta,Q,q}) + O(L)
\]
\[
+ O_\epsilon\left(\frac{Q^{5/2+\epsilon}}{L^2}\right). \]

Similarly, we find that \(m = O(Q/L) \) and
\[
0 \leq \sum_{1 \leq i \leq m} \# \{(u, v) \in B_i \cap \Omega_{\alpha,\beta,\delta,Q,q} : ab \equiv 1 \pmod{q}\}
\]
\[
\leq \sum_{1 \leq i \leq m} \# \{(u, v) \in B_i : ab \equiv 1 \pmod{q}\}
\]
\[
= m \frac{\phi(q)}{q^2} L^2 + O_\epsilon(mq^{1/2+\epsilon}) = O(L) + O_\epsilon\left(\frac{Q^{3/2+\epsilon}}{L}\right). \]

Taking \(\eta = 5/6 \), we have
\[
\# \{(u, v) \in \Omega_{\alpha,\beta,\delta,Q,q} : ab \equiv 1 \pmod{q}\} = \frac{\phi(q)}{q^2} \text{Area}(\Omega_{\alpha,\beta,\delta,Q,q}) + O_\epsilon(Q^{5/6+\epsilon}). \]

Thus,
\[\#D_{\alpha,\beta,\delta,Q,x} = M + E, \] (6)
where
\[
M = \sum_{(\alpha-\delta)Q/2 \leq q \leq Q} \frac{\phi(q)}{q^2} \text{Area}(\Omega_{\alpha,\beta,\delta,Q,q}), \] (7)
and
\[
E = \sum_{(\alpha-\delta)Q/2 \leq q \leq Q} E_{\alpha,\beta,\delta,Q,q} = O_\epsilon(Q^{11/6+\epsilon}). \] (8)
To examine the main term M in (7), we recall from the definition of the set $\Omega_{\alpha,\beta,\delta,Q,q}$ in (5) that

$$(\alpha - \delta)qQ - q^2 \leq uv \leq (\alpha + \delta)qQ - q^2.$$

We first note that when $\alpha > \beta$ and δ is small enough, all the areas $\text{Area}(\Omega_{\alpha,\beta,\delta,Q,q})$ are zero for all values of q. Indeed, if $\alpha > \beta$ and $(u, v) \in \text{Area}(\Omega_{\alpha,\beta,\delta,Q,q})$, then

$$(\alpha - 1 - \delta)q^2 \leq (\alpha - \delta)qQ - q^2 \leq uv \leq (\beta - 1 + \delta)q^2.$$

This shows that for $\delta > 0$ small enough, all of the sets $\text{Area}(\Omega_{\alpha,\beta,\delta,Q,q})$ are empty. In what follows we will restrict to the case $\alpha < \beta$. From the position of the hyperbolas $uv = (\alpha - \delta)qQ - q^2$ and $uv = (\alpha + \delta)qQ - q^2$, the horizontal lines $v = (p - 1 - \delta)q$ and $v = (p - 1 + \delta)q$, and their points of intersection with the boundary of the square $[1, q] \times [1, q]$, we find that

$$\Omega_{\alpha,\beta,\delta,Q,q} = \mathcal{L} \cap ([1, q] \times [1, q]),$$

where \mathcal{L} is the “parallelogram shaped” region that lies between the hyperbolas and horizontal lines.

It is easy to see that if $q < (\alpha - \delta)Q/(\beta + \delta)$, then \mathcal{L} lies completely outside the square $[1, q] \times [1, q]$. Furthermore, one can verify that if $(\alpha - \delta)Q/(\alpha + \delta) \leq q \leq (\alpha + \delta)Q/(\beta - \delta)$, then \mathcal{L} intersects the square $[1, q] \times [1, q]$ but does not lie entirely inside it. This forces \mathcal{L} to lie close enough to the boundary of the square $[1, q] \times [1, q]$, so that the total contribution of these values of q to the main term M is negligible. Hence, we are left with the sum

$$\sum_{(\alpha + \delta)Q/(\beta - \delta) \leq q \leq Q} \frac{\phi(q)}{q^2} \text{Area}(\mathcal{L}).$$ \hspace{1cm} (9)$$

Here, $\text{Area}(\mathcal{L})$ is asymptotic to the area of the parallelogram. That is, if δ is small enough, then we have

$$\text{Area}(\mathcal{L}) \sim 2\delta q \left[\frac{(\alpha + \delta)qQ - q^2}{(\beta - 1)q} - \frac{(\alpha - \delta)qQ - q^2}{(\beta - 1)q} \right] = 2\delta q \left(\frac{2\delta Q}{\beta - 1} \right) = 4\delta^2 qQ, \hspace{1cm} (10)$$

as $Q \to \infty$. Inserting (10) into (9), we obtain

$$M \sim \frac{4\delta^2 Q}{\beta - 1} \sum_{(\alpha + \delta)Q/(\beta - \delta) \leq q \leq Q} \frac{\phi(q)}{q},$$ \hspace{1cm} (11)$$

We estimate the summation in (11) by employing the following result from [4].
Lemma 2 (Lemma 2.3 from [4]). Suppose that a and b are two real numbers such that $0 < a < b$, $q \in \mathbb{N}^*$ and f is a piecewise C^1 function defined on $[a, b]$. Then we have

$$
\sum_{a < q \leq b} \frac{\phi(q)}{q} f(q) = \frac{1}{\zeta(2)} \int_a^b f(x) \, dx + O \left(\log b \left(\|f\|_\infty + \int_a^b |f'(x)| \, dx \right) \right).
$$

Applying Lemma 2, we get

$$
\sum_{(\alpha+\delta)Q/(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q} = \frac{1}{\zeta(2)} \int_{(\alpha+\delta)Q/(\beta-\delta)}^Q dt + O(\log Q). \tag{12}
$$

Then inserting (12) into (11), we find that

$$
\frac{M}{\delta^2 Q^2} \rightarrow \frac{4}{(\beta-1)\zeta(2)} \left(1 - \frac{\alpha}{\beta} \right), \tag{13}
$$

as $Q \to \infty$ first and then followed by $\delta \to 0$.

Next, we consider the set of matrices

$$
\mathcal{C}_{\alpha, \beta, \delta, Q, x} = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathcal{A}(Q, x) : 1 \leq a, b, d \leq c \leq Q, \, ad - bc = -1, \right. \\
\left. (\alpha - \delta)Q \leq a + d \leq (\alpha + \delta)Q, \\
(\beta - 1 - \delta)c \leq a \leq (\beta - 1 + \delta)c \right\}.
$$

Estimating the cardinality of $\mathcal{C}_{\alpha, \beta, \delta, Q, x}$ in a similar fashion to that in (3), we write

$$
\#\mathcal{C}_{\alpha, \beta, \delta, Q, x} = \sum_{1 \leq c \leq Q} \sum_{\substack{1 \leq d \leq c \\ \gcd(c, d) = 1}} \frac{1}{(\alpha - \delta)Q \leq c - d + d \leq (\alpha + \delta)Q \\
(\beta - 1 - \delta)c \leq c - d \leq (\beta - 1 + \delta)c} \tag{14}
$$

The equality in (14) follows by noticing that the conditions $1 \leq a \leq c$ and $ad - bc = -1$ force a to equal $c - d$, where d is the multiplicative inverse of d modulo c in the interval $[1, c]$. Furthermore, let us note in (14) that the terms for which $c < (\alpha - \delta)Q/2$ have no contribution to the sum. Indeed, the inequality $(\alpha - \delta)Q \leq c - d + d$ implies $(\alpha - \delta)Q < 2q$. Hence, setting $q = c$, $x = d$ and $y = d$, we obtain

$$
\#\mathcal{C}_{\alpha, \beta, \delta, Q, x} \text{ in the form}
$$

$$
\#\mathcal{C}_{\alpha, \beta, \delta, Q, x} = \sum_{(\alpha - \delta)Q/2 \leq q \leq Q} \#\{ (x, y) \in \Gamma_{\alpha, \beta, \delta, Q, q} \cap \mathbb{Z}^2 : xy \equiv 1 \pmod{q} \}, \tag{15}
$$
where
\[\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q} = \{(u,v) \in \mathbb{R}^2 : 1 \leq u,v \leq q, \]
\[(\alpha - \delta)Q - q \leq u - v \leq (\alpha + \delta)Q - q, \]
\[(2 - \beta - \delta)q \leq v \leq (2 - \beta + \delta)q \}. \tag{16} \]

Applying Lemma 1 as before, we obtain
\[\# \{(x,y) \in \Gamma_{\alpha,\beta,\delta,\mathbb{Q},q} \cap \mathbb{Z}^2 : xy \equiv 1 \pmod{q} \} = \frac{\phi(q)}{q^2} \text{Area}(\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q}) \]
\[+ E_{\alpha,\beta,\delta,\mathbb{Q},q}, \tag{17} \]

where
\[E_{\alpha,\beta,\delta,\mathbb{Q},q} = O_e(Q^{5/6+\epsilon}). \tag{18} \]

Then inserting (17) and (18) into (15), we get
\[\#C_{\alpha,\beta,\delta,\mathbb{Q},x} = M' + E', \tag{19} \]

where
\[M' = \sum_{(\alpha - \delta)Q/2 \leq q \leq Q} \frac{\phi(q)}{q^2} \text{Area}(\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q}) \tag{20} \]

and
\[E' = \sum_{(\alpha - \delta)Q/2 \leq q \leq Q} E'_{\alpha,\beta,\delta,\mathbb{Q},q} = O_e(Q^{11/6+\epsilon}). \tag{21} \]

From the definition of the set \(\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q} \) in (16), we see that
\[\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q} = \mathcal{M} \cap ([1,q] \times [1,q]), \]

where \(\mathcal{M} \) is the parallelogram that lies between the slant lines \(v = u + q - (\alpha + \delta)Q \) and \(v = u + q - (\alpha - \delta)Q \) and the horizontal lines \(v = (\beta - \delta)q \) and \(v = (2 - \beta + \delta)q \).

First, we observe that if \(\alpha > \beta \), then for \(\delta \) small enough all parallelograms \(\mathcal{M} \) lie outside the square \([1,q] \times [1,q]\). In this situation, the sets \(\Gamma_{\alpha,\beta,\delta,\mathbb{Q},q} \) are empty. Hence, the main term \(M' \) is zero.

In what follows, we consider the case when \(\alpha < \beta \). If \(q < (\alpha - \delta)Q/(\beta + \delta) \), then the parallelograms \(\mathcal{M} \) still lie outside the square \([1,q] \times [1,q]\). Hence, we may restrict to the interval \([(\alpha - \delta)Q/(\beta + \delta), Q]\).

Next, if \(q \) belongs to the interval \([(\alpha - \delta)Q/(\beta + \delta), (\alpha + \delta)Q/(\beta - \delta)] \), then \(\mathcal{M} \) intersects the square \([1,q] \times [1,q]\) but is not entirely contained in it. This forces \(\mathcal{M} \) to lie close to the boundary of the square \([1,q] \times [1,q]\), so that all those values of \(q \) satisfying this property have negligible contribution to the main term \(M' \).

Hence, we may restrict the summation over \(q \) to the interval \([(\alpha + \delta)Q/(\beta - \delta), Q]\). For all such values of \(q \), we see that \(\mathcal{M} \) is entirely contained in the square \([1,q] \times [1,q]\).
and its area is equal to exactly $4\delta^2 qQ$. Hence, the main term in (20) is given by

$$M' = \sum_{(\alpha+\delta)Q/(\beta-\delta)\leq q\leq Q} \frac{\phi(q)}{q^2} \text{Area}(\Gamma_{\alpha,\beta,\delta,Q,q}) = 4\delta^2 Q \sum_{(\alpha+\delta)Q/(\beta-\delta)\leq q\leq Q} \frac{\phi(q)}{q}. \quad (22)$$

Using Lemma 2, we find that

$$\sum_{(\alpha+\delta)Q/(\beta-\delta)\leq q\leq Q} \frac{\phi(q)}{q} = \frac{Q}{2\zeta(2)} \left(1 - \frac{\alpha + \delta}{\beta - \delta}\right) + O(\log q). \quad (23)$$

Then inserting (23) into (22), we see that

$$\frac{M'}{\delta^2 Q^2} \to \frac{4}{\zeta(2)} \left(1 - \frac{\alpha + \delta}{\beta - \delta}\right), \quad (24)$$

as $Q \to \infty$ first and then followed by $\delta \to 0$. On combining the above estimates for $\#D_{\alpha,\beta,\delta,Q,x}$ and $\#C_{\alpha,\beta,\delta,Q,x}$ when β is larger than α and recalling that both quantities are zero when β is less than α, we deduce that

$$\lim_{\delta \to 0} \lim_{Q \to \infty} \lim_{x \to \infty} \frac{\#D_{\alpha,\beta,\delta,Q,x} + \#C_{\alpha,\beta,\delta,Q,x}}{\delta^2 Q^2} = \begin{cases} 4 \left(1 - \frac{\alpha}{\beta}\right) \frac{1}{\zeta(2)} + 4 \left(1 - \frac{\alpha}{\beta}\right), & \text{if } \alpha \leq \beta; \\
0, & \text{if } \alpha < \beta; \\
\frac{4}{\zeta(2)} \left(\frac{\beta + \alpha}{\beta - 1}\right), & \text{if } \alpha \leq \beta; \\
0, & \text{if } \alpha > \beta. \end{cases} \quad (25)$$

We have the following result, which is essentially Theorem 1.1 from [12].

Lemma 3. Given a matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

of determinant -1 with $a, b, c, d \geq 1$, there are positive real-valued constants K_A and c' such that

$$M_A(x) = K_A x^{1+(a+b)/(c+d)} + O_A(x^{1/2+(a+b)/(c+d)} \exp\{-c'(\log x)^{3/5}(\log \log x)^{-1/5}\}).$$

For the sake of completeness, we outline a sketch of the proof of Lemma 3. Consider the Dirichlet series

$$F_A(s) = \sum_{n=1}^{\infty} \frac{f_A(n)}{n^s}.$$
One can show that \(F_A(s) \) converges in the half plane \(\Re s = \sigma > 1 + (a + b)/(c + d) \) and has an Euler product in that region. Write
\[
F_A(s) = \frac{\zeta(s - (a + b)/(c + d))}{\zeta(2s - 2(a + b)/(c + d))} T_A(s).
\]

Furthermore, one can show that \(\zeta(2s - 2(a + b)/(c + d))^{-1}T_A(s) \) is analytic on a larger half-plane \(\sigma > \sigma_0 \). Hence, \(F_A(s) \) is meromorphic there with a simple pole at \(s = 1 + (a + b)/(c + d) \).

Next, we utilize a variant of Perron’s formula and write
\[
\sum_{n \leq x} \left(1 - \frac{n}{x}\right) f_A(n) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\zeta(s - (a + b)/(c + d))}{\zeta(2s - 2(a + b)/(c + d))} T_A(s) \frac{x^s}{s(s + 1)} ds,
\]
where \(1 + (a + b)/(c + d) < c \leq 5/4 + (a + b)/(c + d) \). We need to apply the zero-free region for \(\zeta(s) \) due to Korobov [8] and Vinogradov [14] in the region
\[
\sigma \geq 1 - c_0 (\log t)^{-2/3} (\log \log t)^{-1/3}
\]
for \(t \geq t_0 \), in which
\[
\frac{1}{\zeta(\sigma)} = O((\log t)^{2/3} (\log \log t)^{1/3}).
\]

(See the end-of-chapter notes for Chapter 6 in Titchmarsh’s classical book [13]; see, also, Chapters 2 and 5 in Walfisz’s book [15].) We then fix \(0 < U < T \leq x \), let \(\nu = 1/2 + (a + b)/(c + d) \) and
\[
\eta = \nu - c_0 (\log U)^{-2/3} (\log \log U)^{-1/3},
\]
and deform the path of integration into the union of the line segments
\[
\begin{align*}
\gamma_1, \gamma_9 : & s = c + it, \quad \text{if } |t| \geq T; \\
\gamma_2, \gamma_8 : & s = \sigma \pm iT, \quad \text{if } \nu \leq \sigma \leq c; \\
\gamma_3, \gamma_7 : & s = \nu + it, \quad \text{if } U \leq |t| \leq T; \\
\gamma_4, \gamma_6 : & s = \sigma \pm iU, \quad \text{if } \eta \leq \sigma \leq \nu; \\
\gamma_5 : & s = \eta + it, \quad \text{if } |t| \leq U.
\end{align*}
\]

Here, we note that the integrand is analytic on and within this modified contour. Hence, by the residue theorem
\[
M_A(x) = \frac{1}{(1 + (a + b)/(c + d))(2 + (a + b)/(c + d))\zeta(2)} T_A \left(1 + \frac{a + b}{c + d}\right) \\
\times x^{1+(a+b)/(c+d)} + \sum_{k=1}^{q} J_k,
\]
with the main term coming from the residue at the simple pole at \(s = 1 + (a + b)/(c + d) \). Note that we will take

\[
K_A = \frac{1}{(1 + (a + b)/(c + d))(2 + (a + b)/(c + d))\zeta(2)} T_A \left(1 + \frac{a + b}{c + d} \right)
\]

in the statement of the lemma.

We estimate the integral along our modified contour and make use of the well-known bounds

\[
|\zeta(\sigma + it)| = \begin{cases}
O(t^{(1-\sigma)/2}), & \text{if } 0 \leq \sigma \leq 1 \text{ and } |t| \geq 1; \\
O(\log t), & \text{if } 1 \leq \sigma \leq 2; \\
O(1), & \text{if } \sigma \geq 2.
\end{cases}
\]

(See Theorem 1.9 in Ivić’s classical book [6].) Upon collecting all estimates, we have the statement of the lemma.

Lemma 3 shows us that

\[
\frac{\log M_A(x)}{\log x} \sim 1 + \frac{a + b}{c + d},
\]

as \(x \to \infty \). Since

\[
a + b = a - \det(A) \quad \text{and} \quad \frac{b}{c} = \frac{b}{d} + \frac{\det(A)}{d(c + d)},
\]

when \(d > c \) we see that

\[
\left| \frac{\log M_A(x)}{\log x} - \frac{b}{d} \right| = O\left(\frac{1}{d^2} \right),
\]

as \(x \to \infty \). When \(c > d \), we have

\[
\left| \frac{\log M_A(x)}{\log x} - \frac{a}{c} \right| = O\left(\frac{1}{c^2} \right),
\]

as \(x \to \infty \).

We partition \(A(Q, x) \) into two subsets, according to whether \(1 \leq \max(c, d) \leq \sqrt{Q} \) or \(\max(c, d) > \sqrt{Q} \). There are at most \(O(Q^{3/2}) \) matrices of the first type, and for the second type we have \(O(1/d^2) = O(1/Q) \) and \(O(1/c^2) = O(1/Q) \) when \(d > c \) and \(c > d \), respectively, as \(Q \to \infty \).

We note that the \(\delta \) in our definitions of \(D_{\alpha, \beta, \delta, Q, x} \) and \(C_{\alpha, \beta, \delta, Q, x} \) should be replaced by an expression of the form \(\delta + \delta_E(Q) \), where the function \(\delta_E(Q) = O(1/Q) \), but in what follows we let \(Q \) tend to infinity before letting \(\delta \) tend to zero, so in our case we may replace one by the other.

Since \(1 + (a + b)/(c + d) < \beta + \delta < 2 \), we find that \(a < c \), and similarly \(b \leq d \). So the conditions \(a, b \leq d \) and \(a, b \leq c \) in \(D_{\alpha, \beta, \delta, Q, x} \) and \(C_{\alpha, \beta, \delta, Q, x} \) are satisfied. Thus,
\[
\lim_{x \to \infty} \left| \frac{\#D_{a,\beta,\delta;Q,x} + \#C_{a,\beta,\delta;Q,x}}{\delta^2 Q^2} - \frac{\#\{A \in \mathcal{A}(Q, x) : \Psi_{Q,x}(A) \in V_{a,\beta,\delta}\}}{\delta^2 Q^2} \right| = O\left(\frac{1}{\delta^2 \sqrt{Q}}\right)
\]
as \(Q \to \infty\). Upon combining this with (25), the theorem is proved.

Acknowledgment. The second author acknowledges support from National Science Foundation grant DMS 0838434 “EMSW21MCTP: Research Experience for Graduate Students.”

References

