EXPANSIONS IN NON-INTEGER BASES: LOWER ORDER REVISITED

Simon Baker
School of Mathematics, University of Manchester, Manchester, United Kingdom
simonbaker412@gmail.com

Nikita Sidorov
School of Mathematics, University of Manchester, Manchester, United Kingdom
sidorov@manchester.ac.uk

Received: 1/2/14, Accepted: 5/21/14, Published: 10/8/14

Abstract
Let $q \in (1, 2)$ and $x \in \left[0, \frac{1}{q-1}\right]$. We say that a sequence $(\varepsilon_i)_{i=1}^{\infty} \in \{0, 1\}^\mathbb{N}$ is an expansion of x in base q (or a q-expansion) if

$$x = \sum_{i=1}^{\infty} \varepsilon_i q^{-i}.$$

For any $k \in \mathbb{N}$, let \mathcal{B}_k denote the set of q such that there exists x with exactly k expansions in base q. In 2009, the second-named author showed $\min \mathcal{B}_2 = q_2 \approx 1.71064$, the appropriate root of $x^4 = 2x^2 + x + 1$. In this paper we show that for any $k \geq 3$, $\min \mathcal{B}_k = q_f \approx 1.75488$, the appropriate root of $x^3 = 2x^2 - x + 1$.

1. Introduction
Let $q \in (1, 2)$ and $I_q = \left[0, \frac{1}{q-1}\right]$. Given $x \in \mathbb{R}$, we say that a sequence $(\varepsilon_i)_{i=1}^{\infty} \in \{0, 1\}^\mathbb{N}$ is a q-expansion for x if

$$x = \sum_{i=1}^{\infty} \varepsilon_i q^{-i}. \tag{1}$$

Expansions in non-integer bases were pioneered in the papers of Rényi [10] and Parry [9].

It is a simple exercise to show that x has a q-expansion if and only if $x \in I_q$. When (1) holds, we will adopt the notation $x = (\varepsilon_1, \varepsilon_2, \ldots)_q$. Given $x \in I_q$, we
denote the set of \(q \)-expansions for \(x \) by \(\Sigma_q(x) \), i.e.,

\[
\Sigma_q(x) = \left\{ (\varepsilon_i)_{i=1}^{\infty} \in \{0, 1\}^\mathbb{N} : \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i} = x \right\}.
\]

In [5] it is shown that for \(q \in (1, \frac{1+\sqrt{5}}{2}) \) the set \(\Sigma_q(x) \) is uncountable for all \(x \in (0, \frac{1}{q-1}) \). The endpoints of \(I_q \) trivially have a unique \(q \)-expansion for all \(q \in (1, 2) \).

In [14] it is shown that for \(q = \frac{1+\sqrt{5}}{2} \) every \(x \in (0, \frac{1}{q-1}) \) has uncountably many \(q \)-expansions unless \(x = \frac{(1+\sqrt{5})n}{2} \mod 1 \), for some \(n \in \mathbb{Z} \), in which case \(\Sigma_q(x) \) is infinite countable. Moreover, in [3] it is shown that for all \(q \in (\frac{1+\sqrt{5}}{2}, 2) \) there exists \(x \in (0, \frac{1}{q-1}) \) with a unique \(q \)-expansion. In this paper we will be interested in the set of \(q \in (1, 2) \) for which there exists \(x \in I_q \) with precisely \(k \) \(q \)-expansions. More specifically, we will be interested in the set

\[
\mathcal{B}_k := \left\{ q \in (1, 2) \mid \text{ there exists } x \in \left(0, \frac{1}{q-1}\right) \text{ satisfying } \#\Sigma_q(x) = k \right\}.
\]

It was shown in [4] that \(\mathcal{B}_k \neq \emptyset \) for any \(k \geq 2 \). Similarly we can define \(\mathcal{B}_{k_0} \) and \(\mathcal{B}_{2k_0} \).

The reader should bear in mind the possibility that the number of expansions could lie strictly between countable infinite and the continuum. By the above remarks it is clear that \(\mathcal{B}_1 = (\frac{1+\sqrt{5}}{2}, 2) \). In [12] the following theorem was shown to hold.

Theorem 1.1.

- The smallest element of \(\mathcal{B}_2 \) is \(q_2 \approx 1.71064 \),

the appropriate root of \(x^4 = 2x^2 + x + 1 \).

- The next smallest element of \(\mathcal{B}_2 \) is \(q_f \approx 1.75488 \),

the appropriate root of \(x^3 = 2x^2 - x + 1 \).

- For each \(k \in \mathbb{N} \) there exists \(\gamma_k > 0 \) such that \((2 - \gamma_k, 2) \in \mathcal{B}_j \) for all \(1 \leq j \leq k \).

The following theorem is the central result of the present paper. It answers a question posed by V. Komornik [7] (see also [12, Section 5]).

Theorem 1.2. For \(k \geq 3 \) the smallest element of \(\mathcal{B}_k \) is \(q_f \).

The range of \(q > \frac{1+\sqrt{5}}{2} \) which are “sufficiently close” to the golden ratio is referred to in [12] as the lower order, which explains the title of the present paper.

In the course of our proof of Theorem 1.2 we will also show that \(q_f \in \mathcal{B}_{k_0} \).

Combined with our earlier remarks, Theorem 1.1, Theorem 1.2, and a result in [11] which states that for \(q \in (\frac{1+\sqrt{5}}{2}, 2) \) almost every \(x \in I_q \) has a continuum of \(q \)-expansions, we can conclude the following.
Theorem 1.3. In base q_f all situations occur: there exist $x \in I_q$ having exactly k q-expansions for each $k = 1, 2, \ldots, k = \aleph_0$ or $k = 2^{\aleph_0}$. Moreover, q_f is the smallest $q \in (1, 2)$ satisfying this property.

Before proving Theorem 1.2 it is necessary to recall some theory. In what follows we fix $T_{q,0}(x) = qx$ and $T_{q,1}(x) = qx - 1$. We will typically denote an element of $\bigcup_{n=0}^{\infty} \{T_{q,0}, T_{q,1}\}^n$ by a; here $\{T_{q,0}, T_{q,1}\}^0$ denotes the set consisting of the identity map. Moreover, if $a = (a_1, \ldots, a_n)$ we shall use $a(x)$ to denote $(a_n \circ \cdots \circ a_1)(x)$ and $|a|$ to denote the length of a.

We let

$$\Omega_q(x) = \{ (a_i)_{i=1}^\infty \in \{T_{q,0}, T_{q,1}\}^N : (a_n \circ \cdots \circ a_1)(x) \in I_q \text{ for all } n \in \mathbb{N} \}.$$

The significance of $\Omega_q(x)$ is made clear by the following lemma.

Lemma 1.4. $\# \Sigma_q(x) = \# \Omega_q(x)$ where our bijection identifies $(\varepsilon_i)_{i=1}^\infty$ with $(T_{q,\varepsilon_i})_{i=1}^\infty$.

The proof of Lemma 1.4 is contained within [2]. It is an immediate consequence of Lemma 1.4 that we can interpret Theorem 1.2 in terms of $\Omega_q(x)$ rather than $\Sigma_q(x)$.

An element $x \in I_q$ satisfies $T_{q,0}(x) \in I_q$ and $T_{q,1}(x) \in I_q$ if and only if $x \in \left[\frac{1}{q}, \frac{1}{q(q-1)} \right]$. Moreover, if $\# \Sigma_q(x) > 1$ or equivalently $\# \Omega_q(x) > 1$, then there exists a unique minimal sequence of transformations a such that $a(x) \in \left[\frac{1}{q}, \frac{1}{q(q-1)} \right]$. In what follows we let $S_q := \left[\frac{1}{q}, \frac{1}{q(q-1)} \right]$. The set S_q is usually referred to as the switch region. We will also make regular use of the fact that if $x \in I_q$ and a is a sequence of transformations such that $a(x) \in I_q$, then

$$\# \Omega_q(x) \geq \# \Omega_q(a(x)) \text{ or equivalently } \# \Sigma_q(x) \geq \# \Sigma_q(a(x)).$$

(2)

This is immediate from the definition of $\Omega_q(x)$ and Lemma 1.4.

In the course of our proof of Theorem 1.2 we will frequently switch between $\Sigma_q(x)$ and the dynamical interpretation of $\Sigma_q(x)$ provided by Lemma 1.4. Often considering $\Omega_q(x)$ will help our exposition.

The following lemma is a consequence of [6, Theorem 2].

Lemma 1.5. Let $q \in \left(\frac{1+\sqrt{5}}{2}, q_f \right)$, if $x \in I_q$ has a unique q-expansion $(\varepsilon_i)_{i=1}^\infty$, then

$$(\varepsilon_i)_{i=1}^\infty \in \left\{ 0^k(10)^\infty, 1^k(10)^\infty, 0^\infty, 1^\infty \right\},$$

where $k \geq 0$. Similarly, if $(\varepsilon_i)_{i=1}^\infty \in \left\{ 0^k(10)^\infty, 1^k(10)^\infty, 0^\infty, 1^\infty \right\}$, then for $q \in \left(\frac{1+\sqrt{5}}{2}, 2 \right)$ $x = (((\varepsilon_i)_{i=1}^\infty)_q \text{ has a unique } q\text{-expansion given by } (\varepsilon_i)_{i=1}^\infty.$

In Lemma 1.5 we have adopted the notation $(\varepsilon_1 \ldots \varepsilon_n)^k$ to denote the concatenation of $(\varepsilon_1 \ldots \varepsilon_n) \in \{0, 1\}^n$ by itself k times and $(\varepsilon_1 \ldots \varepsilon_n)^\infty$ to denote the infinite
sequence obtained by concatenating $\varepsilon_1 \ldots \varepsilon_n$ by itself infinitely many times. We will use this notation throughout.

The following lemma follows from the branching argument first introduced in [13].

Lemma 1.6. Let $k \geq 2$, $x \in I_q$, and suppose $\#\Sigma_q(x) = k$ or equivalently $\#\Omega_q(x) = k$. If a is the unique minimal sequence of transformations such that $a(x) \in S_q$, then

$$\#\Omega_q(T_{q,1}(a(x))) + \#\Omega_q(T_{q,0}(a(x))) = k.$$

Moreover, $1 \leq \#\Omega_q(T_{q,1}(a(x))) < k$ and $1 \leq \#\Omega_q(T_{q,0}(a(x))) < k$.

The following result is an immediate consequence of Lemma 1.4 and Lemma 1.6.

Corollary 1.7. $B_k \subset B_2$ for all $k \geq 3$.

An outline of our proof of Theorem 1.2 is as follows: first of all we will show that $q_f \in B_2$ for all $k \geq 1$. Then by Theorem 1.1 and Corollary 1.7, to prove Theorem 1.2, it suffices to show that $q_2 \notin B_k$ for all $k \geq 3$. But by an application of Lemma 1.6, to show that $q_2 \notin B_k$ for all $k \geq 3$ it suffices to show that $q_2 \notin B_3$ and $q_2 \notin B_4$. This will yield the claim of Theorem 1.2.

2. Proof that $q_f \in B_k$ for all $k \geq 1$

To show that $q_f \in B_k$ for all $k \geq 1$, we construct an $x \in I_{q_f}$ satisfying $\#\Sigma_{q_f}(x) = k$ explicitly.

Proposition 2.1. For each $k \geq 1$ the number $x_k = (1(0000)^{k-1}0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_k) = k$. Moreover, $x_{k_0} = (10^{\infty})_{q_f}$ satisfies $\text{card} \Sigma_{q_f}(x) = k_0$.

Proof. We proceed by induction. For $k = 1$ we have $x_1 = ((10)^{\infty})_{q_f}$, and therefore $\#\Sigma_{q_f}(x_1) = 1$ by Lemma 1.5. Let us assume $x_k = (1(0000)^{k-1}0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_k) = k$. To prove our result, it suffices to show that $x_{k+1} = (1(0000)^{k}0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_{k+1}) = k + 1$.

We begin by remarking that by Lemma 1.5 $((0000)^{k}0(10)^{\infty})_{q_f}$ has a unique q_f-expansion. Therefore there is a unique q_f-expansion of x_{k+1} beginning with 1. Furthermore, it is a simple exercise to show that q_f satisfies the equation $x^4 = x^3 + x^2 + 1$, which implies that $(0(101)(0000)^{k-1}0(10)^{\infty})_{q_f}$ is also a q_f-expansion for x_{k+1}.

To prove the claim, we will show that if $(\varepsilon_i)_{i=1}^{\infty}$ is a q-expansion for x_{k+1} and $\varepsilon_1 = 0$, then $\varepsilon_2 = 1$, $\varepsilon_3 = 1$ and $\varepsilon_4 = 0$. Which combined with our inductive hypothesis implies that the set of q-expansions for x_{k+1} satisfying $\varepsilon_1 = 0$ consists of k distinct elements. Combining these q-expansions with the unique q-expansion of x_{k+1} satisfying $\varepsilon_1 = 1$ we may conclude $\#\Sigma_{q_f}(x_{k+1}) = k + 1$.

Let us suppose $\varepsilon_1 = 0$; if $\varepsilon_2 = 0$, then we would require

$$x_{k+1} = (1(0000)^k0(10)^\infty)_{q_f} \leq (00(1)^\infty)_{q_f};$$

however, $x_{k+1} > \frac{1}{q_f}$ and $\sum_{i=3}^{\infty} \frac{1}{q_f} < \frac{1}{q}$ for all $q > \frac{1+\sqrt{5}}{2}$, and therefore $\varepsilon_2 = 1$. If $\varepsilon_3 = 0$, then we would require

$$x_{k+1} = (1(0000)^k0(10)^\infty)_{q_f} \leq (01(1)^\infty)_{q_f},$$

which is equivalent to

$$x_{k+1} = \frac{1}{q_f} + \frac{1}{q_{f+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^i} \leq \frac{1}{q_f} + \frac{1}{q_{f+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^i};$$

however,

$$\frac{1}{q_f} = \frac{1}{q_f^2} + \frac{1}{q_f^3} \sum_{i=0}^{\infty} \frac{1}{q_f^i},$$

whence (3) cannot occur and $\varepsilon_3 = 1$. Now let us suppose $\varepsilon_4 = 1$. Then we must have

$$x_{k+1} = (1(0000)^k0(10)^\infty)_{q_f} \geq (01110^\infty)_{q_f},$$

which is equivalent to

$$x_{k+1} = \frac{1}{q_f} + \frac{1}{q_{f+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^i} \geq \frac{1}{q_f} + \frac{1}{q_{f+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^i}. \tag{5}$$

The left-hand side of (5) is maximized when $k = 1$, and therefore to show that $\varepsilon_4 = 0$ it suffices to show that

$$\frac{1}{q_f} + \frac{1}{q_f^3} \sum_{i=0}^{\infty} \frac{1}{q_f^i} \geq \frac{1}{q_f} + \frac{1}{q_f^3} \sum_{i=0}^{\infty} \frac{1}{q_f^i} \tag{6}$$

does not hold. By a simple manipulation (6) is equivalent to

$$q_f^6 - q_f^5 - 2q_f^4 + q_f^3 + q_f + 1 \geq 0, \tag{7}$$

but by an explicit calculation we can show that the left-hand side of (7) is strictly negative; therefore (4) does not hold and $\varepsilon_4 = 0$.

Now we consider x_{R_0}. Replicating our analysis for x_k, we can show that if $(\varepsilon_i)^\infty_{i=1}$ is a q-expansion for x_{R_0} and $\varepsilon_1 = 0$, then $\varepsilon_2 = 1$. Unlike our previous case it is possible for ε_3 be equal to 0; however, in this case $\varepsilon_i = 1$ for all $i \geq 4$. If $\varepsilon_3 = 1$, then as in our previous case we must have $\varepsilon_4 = 0$. We observe that

$$x_{R_0} = (10^\infty)_{q_f} = (010(1)^\infty)_{q_f} = (011010^\infty)_{q_f}.$$
Clearly, there exists a unique q-expansion for $x_{\mathcal{N}_0}$ satisfying $\varepsilon_1 = 1$ and a unique q-expansion for $x_{\mathcal{N}_0}$ satisfying $\varepsilon_1 = 0$, $\varepsilon_2 = 1$ and $\varepsilon_3 = 0$. Therefore all other q-expansions of $x_{\mathcal{N}_0}$ have (0110) as a prefix. Repeating the above argument arbitrarily many times we can determine that all the q_f-expansions of $x_{\mathcal{N}_0}$ are of the form:

$$x_{\mathcal{N}_0} = (10^\infty)_{q_f}$$
$$= (010(1)^\infty)_{q_f}$$
$$= (011010^\infty)_{q_f}$$
$$= (0110010(1)^\infty)_{q_f}$$
$$= (0110011010^\infty)_{q_f}$$
$$= (01100110010(1)^\infty)_{q_f}$$
$$= (01100110011010^\infty)_{q_f},$$

which is clearly infinite countable.

Thus, to prove Theorem 1.2, it suffices to show that $q_2 \notin \mathcal{B}_3 \cup \mathcal{B}_4$. This may look like a fairly innocuous exercise, but in reality it requires a substantial effort.

3. Proof that $q_2 \notin \mathcal{B}_3$

By Lemma 1.6, to show that $q_2 \notin \mathcal{B}_k$ for all $k \geq 3$, it suffices to show $q_2 \notin \mathcal{B}_3$ and $q_2 \notin \mathcal{B}_4$. To prove this, we begin by characterizing those $x \in S_{q_2}$ that satisfy $\#\Sigma_{q_2}(x) = 2$. To simplify our notation, we denote for the rest of the paper $\beta := q_2$ and $T_i := T_{q_2,i}$ for $i = 0, 1$.

Proposition 3.1. The only $x \in S_\beta$ which satisfy $\#\Sigma_\beta(x) = 2$ are

$$x = (01(10)^\infty)_\beta = (10000(10)^\infty)_\beta \text{ and } x = (0111(10)^\infty)_\beta = (100(10)^\infty)_\beta.$$

Proof. It was shown in the proof of [12, Proposition 2.4] that if $\frac{1+\sqrt{5}}{2} < q < q_f$ and $y, y+1$ have unique q-expansions, then necessarily $q = \beta$ and either $y = (0000(10)^\infty)_\beta$ and $y+1 = (1(10)^\infty)_\beta$ or $y = (00(10)^\infty)_\beta$ and $y+1 = (111(10)^\infty)_\beta$ respectively. Since for either case there exists a unique $x \in S_\beta$ such that $\beta x - 1 = y$, Lemma 1.6 yields the claim. □

In what follows we will let $(\varepsilon^1_i)_{i=1}^\infty = 01(10)^\infty$, $(\varepsilon^2_i)_{i=1}^\infty = 10000(10)^\infty$, $(\varepsilon^3_i)_{i=1}^\infty = 0111(10)^\infty$ and $(\varepsilon^4_i)_{i=1}^\infty = 100(10)^\infty$.

Remark 3.2. Let $(\bar{\varepsilon}_i)_{i=1}^\infty = (1 - \varepsilon_i)_{i=1}^\infty$, we refer to $(\bar{\varepsilon}_i)_{i=1}^\infty$ as the reflection of $(\varepsilon_i)_{i=1}^\infty$. Clearly $(\bar{\varepsilon}_1^1)_{i=1}^\infty = (\varepsilon^4_i)_{i=1}^\infty$ and $(\bar{\varepsilon}_1^2)_{i=1}^\infty = (\varepsilon^3_i)_{i=1}^\infty$. This is to be expected
as every \(x \in I_\beta \) satisfies \(\# \Sigma_\beta(x) = \# \Sigma_\beta(\frac{1}{q-1} - x) \) and mapping \((\varepsilon_i)_{i=1}^\infty \) to \((\bar{\varepsilon}_i)_{i=1}^\infty \) is a bijection between \(\Sigma_\beta(x) \) and \(\Sigma_\beta(\frac{1}{q-1} - x) \). If \((\varepsilon_i^1)_{i=1}^\infty \) and \((\varepsilon_i^2)_{i=1}^\infty \) were not the reflections of \((\varepsilon_i^1)_{i=1}^\infty \) and \((\varepsilon_i^2)_{i=1}^\infty \) respectively, then there would exist other \(x \in S_\beta \) satisfying \(\# \Sigma_\beta(x) = 2 \), contradicting Proposition 3.1.

In this section we show that no \(x \in I_\beta \) can satisfy \(\# \Sigma_\beta(x) = 3 \). To show that \(\beta \not\in B_3 \) and \(\beta \not\in B_4 \) we will make use of the following proposition.

Proposition 3.3. Suppose \(x \in I_\beta \) satisfies \(\# \Sigma_\beta(x) = 2 \) or equivalently \(\# \Omega_\beta(x) = 2 \). Then there exists a unique sequence of transformations \(a \) such that \(a(x) \in S_\beta \). Moreover, \(a(x) = ((\varepsilon_i^1)_{i=1}^\infty)_\beta \) or \(a(x) = ((\varepsilon_i^3)_{i=1}^\infty)_\beta \).

Proof. Since \(\# \Omega_\beta(x) = 2 \), there must exist \(a \) satisfying \(a(x) \in S_\beta \); otherwise \(\# \Omega_\beta(x) = 1 \). We begin by showing uniqueness; suppose \(a' \) satisfies \(a'(x) \in S_\beta \) and \(a' \neq a \). If \(|a'| < |a| \), then we have two cases. If \(a' \) is a prefix of \(a \), then by (2) and Lemma 1.6,

\[
\# \Omega_\beta(x) \geq \# \Omega_\beta(a'(x)) = \# \Omega_\beta(T_0(a'(x))) + \# \Omega_\beta(T_1(a'(x))) \geq 3,
\]

which contradicts \(\# \Omega_\beta(x) = 2 \). If \(a' \) is not a prefix of \(a \), then there exists \(b \in \bigcup_{n=0}^\infty \{ T_0, T_1 \}^n \) such that \(b(x) \in S_\beta \) and either \(b0 \) is a prefix for \(a' \) and \(b1 \) is a prefix for \(a \), or \(b0 \) is a prefix for \(a \) and \(b1 \) is a prefix for \(a' \). In either case it follows from (2) and Lemma 1.6 that

\[
\# \Omega_\beta(x) \geq \# \Omega_\beta(b(x)) = \# \Omega_\beta(T_0(b(x))) + \# \Omega_\beta(T_1(b(x))) \geq 4,
\]

a contradiction. By analogous arguments we can show that if \(|a'| = |a| \) or \(|a'| > |a| \), then this implies \(\# \Omega_\beta(x) > 2 \). Therefore, \(a \) must be unique.

Now let \(a \) be the unique sequence of transformations such that \(a(x) \in S_\beta \). By Lemma 1.6,

\[
\# \Omega_\beta(T_0(a(x))) = \# \Omega_\beta(T_1(a(x))) = 1.
\]

However, it follows from Proposition 3.1 that this can only happen when \(a(x) = ((\varepsilon_i^1)_{i=1}^\infty)_\beta \) or \(a(x) = ((\varepsilon_i^3)_{i=1}^\infty)_\beta \).

Remark 3.4. By Proposition 3.3, to show that \(x \in I_\beta \) satisfies \(\text{card} \Sigma_\beta(x) > 2 \) (or equivalently, \(\text{card} \Omega_\beta(x) > 2 \)), it suffices to construct a sequence of transformations \(a \) such that \(a(x) \in S_\beta \) with \(a(x) \neq ((\varepsilon_i^1)_{i=1}^\infty)_\beta \) and \(a(x) \neq ((\varepsilon_i^3)_{i=1}^\infty)_\beta \). We will make regular use of this strategy in our later proofs.

Before proving \(\beta \not\in B_3 \) it is appropriate to state numerical estimates\(^1\) for \(S_\beta \), \(((\varepsilon_i^1)_{i=1}^\infty)_\beta \) and \(((\varepsilon_i^3)_{i=1}^\infty)_\beta \). Our calculations yield

\[S_\beta = [0.584575 \ldots, 0.822599 \ldots].\]

\(^1\)The explicit calculations performed in this paper were done using MATLAB. In our calculations we approximated \(\beta \) by 1.710644095045033, which is correct to the first fifteen decimal places.
Table 1: Successive iterates of \((0^k(01)^\infty)_\beta + 1\) falling into \(S_\beta \setminus \{(e^1)_\beta, (e^3)_\beta\}\)

\[
((e^1)_\beta)_{i=1}^\infty, \beta = 0.645198 \ldots \text{ and } ((e^3)_\beta)_{i=1}^\infty, \beta = 0.761976 \ldots.
\]

These estimates will make clear when \(a(x) \in S_\beta\) and whether \(a(x) = ((e^1)_\beta)_{i=1}^\infty\) or \(a(x) = ((e^3)_\beta)_{i=1}^\infty\).

Theorem 3.5. We have \(\beta \not\in B_3\).

Proof. Suppose \(x' \in I_\beta\) satisfies \(\# \Sigma_\beta(x') = 3\) or equivalently \(\# \Omega_\beta(x') = 3\). Let \(a\) denote the unique minimal sequence of transformations such that \(a(x') \in S_\beta\). By considering reflections, we may assume without loss of generality that

\[
\# \Omega_\beta(T_1(a(x'))) = 1 \text{ and } \# \Omega_\beta(T_0(a(x'))) = 2.
\]

Put \(x = T_1(a(x'))\); by a simple argument it can be shown that \(x \neq 0\), so we may assume that \(x = (0^k(01)^\infty)_\beta + 1\) for some \(k \geq 1\). To show that \(\beta \not\in B_3\) we consider \(T_0(a(x')) = x + 1 = (0^k(01)^\infty)_\beta + 1\). We will show that for each \(k \geq 1\) there exists a finite sequence of transformations \(a\) such that \(a(x + 1) \in S_\beta\), \(a(x + 1) \neq ((e^1)_\beta)_{i=1}^\infty\) and \(a(x + 1) \neq ((e^3)_\beta)_{i=1}^\infty\). By Proposition 3.3 and Remark 3.4, this implies \(\# \Omega_\beta(x + 1) > 2\), which is a contradiction. Hence \(\beta \not\in B_3\).

Table 1 states the orbits of \((0^k(01)^\infty)_\beta + 1\) under \(T_0\) and \(T_1\) until eventually \((0^k(01)^\infty)_\beta + 1\) is mapped into \(S_\beta\). Table 1 also includes the orbit of \(1\) under \(T_0\) and \(T_1\) until 1 is mapped into \(S_\beta\). The reason we have included the orbit of \(1\) is because \((0^k(01)^\infty)_\beta + 1 \to 1\) as \(k \to \infty\). Therefore understanding the orbit of \(1\) allows us to understand the orbit of \((0^k(01)^\infty)_\beta + 1\) for large values of \(k\).

By inspection of Table 1, we conclude that for \(1 \leq k \leq 6\) either \((0^k(01)^\infty)_\beta + 1\) has a unique \(q\)-expansion which contradicts \(\# \Omega_\beta(T_0(a(x'))) = 2\), or there exists \(a\) such that \(a((0^k(01)^\infty)_\beta + 1) \in S_\beta\) with \(a((0^k(01)^\infty)_\beta + 1) \neq ((e^1)_\beta)_{i=1}^\infty\) and \(a((0^k(01)^\infty)_\beta + 1) \neq ((e^3)_\beta)_{i=1}^\infty\). By Proposition 3.3, this contradicts \(\# \Omega_\beta(x + 1) = 2\).

To conclude our proof, it suffices to show that for each \(k \geq 7\) there exists \(a\) such that \(a((0^k(01)^\infty)_\beta + 1) \in S_\beta\), \(a((0^k(01)^\infty)_\beta + 1) \neq ((e^1)_\beta)_{i=1}^\infty\) and \(a((0^k(01)^\infty)_\beta + 1) \neq ((e^3)_\beta)_{i=1}^\infty\). For all \(k \geq 7\), we have \((0^k(01)^\infty)_\beta + 1 \in (1, (000000(01)^\infty)_\beta + 1)\); however, by inspection of Table 1, it is clear that \(T_1(x) \in (0.710644 \ldots, 0.746082 \ldots)\).
for all \(x \in (1, (000000(01)^\infty)_\beta + 1) \). Therefore, we can infer that such an \(a \) exists for all \(k \geq 7 \), which concludes our proof.

\[\square \]

4. Proof that \(q_2 \notin \mathcal{B}_4 \)

To prove \(\beta \notin \mathcal{B}_4 \), we will use a similar method to that used in the previous section, the primary difference being there are more cases to consider. Before giving our proof we give details of these cases.

Suppose \(x' \in I_\beta \) satisfies \(\# \Sigma_\beta(x') = 4 \) or equivalently \(\# \Omega_\beta(x') = 4 \). Let \(a' \) denote the unique minimal sequence of transformations such that \(a'(x) \in S_\beta \). By Lemma 1.6,

\[\# \Omega_\beta(T_0(a'(x'))) + \# \Omega_\beta(T_1(a'(x'))) = 4. \]

By Theorem 3.5, \(\# \Omega_\beta(T_0(a'(x'))) \neq 3 \) and \(\# \Omega_\beta(T_1(a'(x'))) \neq 3 \), whence

\[\# \Omega_\beta(T_0(a'(x'))) = \# \Omega_\beta(T_1(a'(x'))) = 2. \tag{8} \]

Letting \(x = T_1(a'(x')) \), we observe that (8) is equivalent to

\[\# \Omega_\beta(x) = \# \Omega_\beta(x + 1) = 2. \tag{9} \]

By Proposition 3.3, there exists a unique sequence of transformations \(a \) such that \(a(x) \in S_\beta \) and \(a(x) = (e_1^i)_{i=1}^{\infty}_\beta \) or \(a(x) = (e_3^i)_{i=1}^{\infty}_\beta \). We now determine the possible unique sequences of transformations \(a \) that satisfy \(a(x) \in S_\beta \).

To determine the unique \(a \) such that \(a(x) \in S_\beta \), it is useful to consider the interval \([\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}] \). The significance of this interval is that \(T_0(\frac{1}{\beta^2-1}) = \frac{\beta}{\beta^2-1} \) and \(T_1(\frac{\beta}{\beta^2-1}) = \frac{1}{\beta^2-1} \). The monotonicity of the maps \(T_0 \) and \(T_1 \) implies that if \(x \in (0, \frac{1}{\beta^2-1}) \) and \(x \notin [\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}] \), then there exists \(i \in \{0, 1\} \) and a minimal \(k \geq 1 \) such that \(T^k_i(x) \in [\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}] \). Furthermore, \(S_\beta \subset [\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}] \), in view of \(\beta > \frac{1+\sqrt{5}}{2} \).

In particular, if \(x \in (0, \frac{1}{\beta^2-1}) \), then there exists a minimal \(k \geq 1 \) such that \(T^k_0(x) \in (\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}) \); \(T^k_0(x) \) cannot equal \(\frac{1}{\beta^2-1} \) or \(\frac{\beta}{\beta^2-1} \) as this would imply \(\# \Omega_\beta(x) = 1 \). There are three cases to consider: either \(T^k_0(x) \in S_\beta \), in which case \(T^k_0(x) = (e_1^i)_{i=1}^{\infty}_\beta \) or \(T^k_0(x) = (e_3^i)_{i=1}^{\infty}_\beta \) by Proposition 3.3, or alternatively \(T^k_0(x) \in (\frac{1}{\beta^2-1}, \frac{1}{\beta}) \) or \(T^k_0(x) \in (\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}) \). It is a simple exercise to show that if \(T^k_0(x) = (e_1^i)_{i=1}^{\infty}_\beta \) or \(T^k_0(x) \in (\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}) \), then \(k \geq 2 \). By Lemma 1.4 and Proposition 3.3, if \(T^k_0(x) \in S_\beta \), then

\[x = (0^k e_1^i)_{i=1}^{\infty}_\beta \] for some \(k \geq 1 \) or \(x = (0^k e_3^i)_{i=1}^{\infty}_\beta \) for some \(k \geq 2 \).

For any \(q \in (\frac{1+\sqrt{5}}{\beta^2-1}, q_1) \) and \(y \in (\frac{1}{\beta^2-1}, \frac{1}{\beta}) \) there exists a unique minimal sequence \(a'' \) such that \(a''(y) \in S_q \). Moreover, \(a''(y) = (T_{q,0})^j(y) \) for some \(j \geq 1 \)
and \((T_{q,1} \circ T_{q,0})^i(y) \in \left(\frac{1}{q^2-1}, \frac{1}{q}\right)\) for all \(i < k\). For all \(y \in \left(\frac{1}{q^2-1}, \frac{1}{q}\right)\) we have that \((T_{q,1} \circ T_{q,0})(y) = q^2 y - 1 < q - 1\). Furthermore, it can be checked directly that \(\beta - 1 < ((\varepsilon_i^3)_{i=1}^\infty)_\beta\). Hence if \(T_0^k(x) \in \left(\frac{1}{q^2-1}, \frac{1}{q}\right)\), then

\[
x = (0^k(01)^j(\varepsilon_i^1)_{i=1}^\infty)_\beta,
\]

for some \(k \geq 1\) and \(j \geq 1\). By a similar argument it can be shown that if \(T_0^k(x) \in \left(\frac{1}{q^2-1}, \frac{1}{q}\right)\), then

\[
x = (0^k(10)^j(\varepsilon_i^3)_{i=1}^\infty)_\beta,
\]

for some \(k \geq 2\) and \(j \geq 1\). The above arguments are summarized in the following proposition.

Proposition 4.1. Let \(x\) be as in (9); then one of the following four cases holds:

\[
x = (0^k(\varepsilon_i^1)_{i=1}^\infty)_\beta \text{ for some } k \geq 1, \tag{10}
x = (0^k(\varepsilon_i^3)_{i=1}^\infty)_\beta \text{ for some } k \geq 2, \tag{11}
x = (0^k(01)^j(\varepsilon_i^1)_{i=1}^\infty)_\beta \text{ for some } k \geq 1 \text{ and } j \geq 1, \tag{12}
\]

or

\[
x = (0^k(10)^j(\varepsilon_i^3)_{i=1}^\infty)_\beta \text{ for some } k \geq 2 \text{ and } j \geq 1. \tag{13}
\]

To prove that \(\beta \notin B_4\) we will show that for each of the four cases described in Proposition 4.1 there exists \(a\) such that

\[
a(x + 1) \in S_\beta \setminus \{(\varepsilon_i^1)_{i=1}^\infty)_\beta, (\varepsilon_i^3)_{i=1}^\infty)_\beta\}, \tag{14}
\]

which contradicts \#\(\Omega_\beta(x + 1) = 2\) by Proposition 3.3 and Remark 3.4.

For the majority of our cases an argument analogous to that used in Section 3 will suffice. However, in the case where \(k = 1, 3\) in (12) and \(k = 2, 4\) in (13) a different argument is required. We refer to these cases as the exceptional cases. For the exceptional cases we will also show (14); however, the approach used in slightly more technical and as such we will treat these cases separately.

Proposition 4.2. For each of the cases described by Proposition 4.1 there exists a such that (14) holds.

Proof of Proposition 4.2 for the non-exceptional cases. In the cases where we have \(x = (0^k(\varepsilon_i^1)_{i=1}^\infty)_\beta\) for some \(k \geq 1\) or \(x = (0^k(\varepsilon_i^1)_{i=1}^\infty)_\beta\) for some \(k \geq 1\) it is clear that \(x \to 0\) as \(k \to \infty\). Therefore, to understand the orbit of \((0^k(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1\) or \((0^k(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1\) for large values of \(k\), it suffices to consider the orbit of 1. Similarly, in the cases described by (12) and (13), if we fix \(k \geq 1\), then, as \(j \to \infty\), both \((0^k(01)^j(\varepsilon_i^1)_{i=1}^\infty)_\beta\) and \((0^k(10)^j(\varepsilon_i^3)_{i=1}^\infty)_\beta\) converge to \((0^k(10)^\infty)_\beta\) for some \(l \geq 1\). Consequently, in order to understand the orbits of \((0^k(01)^j(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1\)
and $(0^k(10)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1$ for large values of j, it suffices to consider the orbit of $(0^k(10)^\infty)_{\beta} + 1$, for some $l \geq 1$. By considering these limits it will be clear when a sequence of transformations a exists that satisfies (14) for large values of k and j.

We begin by considering the case $x = (0^k(e_1^1)_{i=1}^\infty)_{\beta}$. Table 2 plots successive (unique) iterates of $(0^k(e_1^1)_{i=1}^\infty)_{\beta} + 1$ until $(0^k(e_1^1)_{i=1}^\infty)_{\beta} + 1$ is mapped into S_β for $1 \leq k \leq 6$. It is clear from inspection of Table 2 that for $1 \leq k \leq 6$ there exists a such that $a(x + 1) \in S_\beta$, $a(x + 1) \not\equiv ((e_1^1)_{i=1}^\infty)_{\beta}$ and $a(x + 1) \not\equiv ((e_1^1)_{i=1}^\infty)_{\beta}$. The case $k \geq 7$ follows from the fact that $(0^k(e_1^1)_{i=1}^\infty)_{\beta} + 1 \in (1,(00000(e_1^1)_{i=1}^\infty)_{\beta} + 1)$ for all $k \geq 7$ and $T_1(y) \in (0.710644\ldots,0.749023\ldots)$ for all $y \in (1,(000000(e_1^1)_{i=1}^\infty)_{\beta} + 1)$. The case described by (11) follows by an analogous argument, so we omit the details and just include the relevant orbits in Table 3.

For the non-exceptional cases described by (12) and (13) an analogous argument works for the first few values of k by considering the limit of $x + 1$ as $j \to \infty$, so, as above, we just include the relevant orbits in Table 3. It is clear by inspection of Table 3 that $(0^k(01)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1 \in (1,(000000001(e_1^1)_{i=1}^\infty)_{\beta} + 1)$ for all $k \geq 7$ and $j \geq 1$. However, $T_1(y) \in (0.710644\ldots,0.749023\ldots)$ for all $y \in (1,(000000001(e_1^1)_{i=1}^\infty)_{\beta} + 1)$; by inspection of Table 3, we can conclude the case described by (12) in the non-exceptional cases. Similarly, it is clear from inspection of Table 3 that $(0^k(10)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1 \in (1,(0000000000(10)^\infty)_{\beta} + 1)$ for all $k \geq 8$ and $j \geq 1$. However, $T_1(y) \in (0.710644\ldots,0.7460826\ldots)$ for all $y \in (1,(0000000000(10)^\infty)_{\beta} + 1)$, therefore by inspection of Table 3 we can conclude the case described by (13) in the non-exceptional cases.

Proof of Proposition 4.2 for the exceptional cases. The reason we cannot use the same method as used for the non-exceptional cases is because as $j \to \infty$ the limits of $(0(01)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1$, $(00(01)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1$, $(000(10)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1$ and $(0000(10)^j(e_1^1)_{i=1}^\infty)_{\beta} + 1$ all have unique β-expansions, which follows from Proposition 3.1. As a consequence of the uniqueness of the β-expansion of the relevant limit, the number of transformations required to map $x + 1$ into S_β becomes arbitrarily large as $j \to \infty$. However, the following proposition shows that we can still

<table>
<thead>
<tr>
<th>$(0^k(e_1^1){i=1}^\infty){\beta} + 1$</th>
<th>Iterates of $(0^k(e_1^1){i=1}^\infty){\beta} + 1$ (to 6 decimal places)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.377166, 1.355842, 1.319363, 1.256961,$</td>
</tr>
<tr>
<td>$(00(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.150213, 0.967605, 0.655228$</td>
</tr>
<tr>
<td>$(000(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.220482, 1.087810, 0.860857, 0.472620, 0.808484$</td>
</tr>
<tr>
<td>$(00000(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.128888, 0.931126, 0.592825$</td>
</tr>
<tr>
<td>$(000000(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.075344, 0.839532, 0.436141, 0.746082$</td>
</tr>
<tr>
<td>$(0000000(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.044044, 0.785989$</td>
</tr>
<tr>
<td>$(00000000(e_1^1){i=1}^\infty){\beta} + 1$</td>
<td>$1.025747, 0.754688$</td>
</tr>
<tr>
<td>1</td>
<td>$1, 0.710644$</td>
</tr>
<tr>
<td>Sequence</td>
<td>Iterates of ((0^k \varepsilon_i^{\infty}{i=1})\beta + 1) (to 6 decimal places)</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>(00000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.019711, 0.744363</td>
</tr>
<tr>
<td>(000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.035438, 0.771266</td>
</tr>
<tr>
<td>(0000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.020716, 0.746082</td>
</tr>
<tr>
<td>(00000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.019711, 0.744363</td>
</tr>
<tr>
<td>(000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.035438, 0.771266</td>
</tr>
<tr>
<td>(0000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.020716, 0.746082</td>
</tr>
<tr>
<td>(00000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.035438, 0.771266</td>
</tr>
<tr>
<td>(000000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.020716, 0.746082</td>
</tr>
<tr>
<td>(0000000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.035438, 0.771266</td>
</tr>
<tr>
<td>(00000000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.020716, 0.746082</td>
</tr>
<tr>
<td>(000000000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.035438, 0.771266</td>
</tr>
<tr>
<td>(0000000000000000001\varepsilon_i^{\infty}{i=1})\beta + 1</td>
<td>1.020716, 0.746082</td>
</tr>
</tbody>
</table>

Table 3: Successive iterates of \((0^k \varepsilon_i^{\infty}_{i=1})_\beta + 1\)
construct an a satisfying (14) for all but three of the exceptional cases.

Proposition 4.3. The following identities hold:

\[
((T_1 \circ T_0)^{j-2} \circ (T_1)^4)((0(01)^j(\varepsilon_i^1)_{i=1}^\infty) \beta + 1) = \frac{\beta - 1}{\beta^2 - 1} + \frac{1}{\beta^2 - 1} \\
\approx 0.59282 \text{ for } j \geq 3,
\]

\[
((T_1 \circ T_0)^j \circ (T_1)^2)((000(01)^j(\varepsilon_i^1)_{i=1}^\infty) \beta + 1) = \frac{\beta - 1}{\beta^3(\beta^2 - 1)} + \frac{1}{\beta^2 - 1} \\
\approx 0.59282 \text{ for } j \geq 1,
\]

\[
((T_0 \circ T_1)^j \circ (T_1)^3)((0000(10)^j(\varepsilon_i^3)_{i=1}^\infty) \beta + 1) =\frac{\beta}{\beta^2 - 1} + \frac{1 - \beta}{\beta^3(\beta^2 - 1)} \\
\approx 0.81434 \text{ for } j \geq 2
\]

and

\[
((T_0 \circ T_1)^j \circ (T_1))((0000(10)^j(\varepsilon_i^3)_{i=1}^\infty) \beta + 1) =\frac{\beta}{\beta^2 - 1} + \frac{1 - \beta}{\beta^3(\beta^2 - 1)} \\
\approx 0.81434 \text{ for } j \geq 1.
\]

Proof. Each of the identities (15), (16), (17) and (18) is proved by similar arguments, so we will just show that (15) holds. Note that

\[
(0(01)^j(\varepsilon_i^1)_{i=1}^\infty) \beta + 1 = \frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+3}(\beta^2 - 1)} + 1,
\]

for all $j \geq 1$. We observe the following:

\[
((T_1 \circ T_0)^{j-2} \circ (T_1)^4)\left(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+3}(\beta^2 - 1)} + 1\right)
\]

\[
= (T_1 \circ T_0)^{j-2} \left(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+1}(\beta^2 - 1)} + \beta^4 - \beta^3 - \beta^2 - \beta - 1\right)
\]

\[
= \beta^{2j-4} \left(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+1}(\beta^2 - 1)} + \beta^4 - \beta^3 - \beta^2 - \beta - 1\right) - \sum_{i=0}^{j-3} \beta^{2i}
\]

\[
= \frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+1}(\beta^2 - 1)} + \beta^2 - \beta^3 - \beta^2 - \beta - 1 - \beta^{2j+2} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4} - \beta^{2j-4} - 1
\]

\[
= \frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+1}(\beta^2 - 1)} + \beta^2 - \beta^3 - \beta^2 - \beta - 1 - \beta^{2j+2} + \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4}
\]

Therefore, to conclude our proof, it suffices to show that

\[
\frac{\beta^{2j+2}}{\beta^{2j+1}(\beta^2 - 1)} + \beta^2 - \beta^3 - \beta^2 - \beta - 1 - \beta^{2j+2} + \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4} = 0.
\]
Table 4: Remaining exceptional cases: \(k = 1, j \in \{1, 2\} \) in (12) and \(k = 2, j = 1 \) in (13)

By manipulating the left-hand side of (19), we conclude that satisfying (19) is equivalent to

\[
\frac{\beta^{2j-1} - \beta^{2j-4} + (\beta^{2j} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4})(\beta^2 - 1)}{\beta^2 - 1} = 0
\]

or

\[
\frac{\beta^{2j-3}(\beta - 1)(\beta^4 - 2\beta^2 - \beta - 1)}{\beta^2 - 1} = 0.
\]

This is true in view of \(\beta^4 - 2\beta^2 - \beta - 1 = 0 \).

Proposition 4.3 and Table 4 (which displays the orbits of the exceptional cases that are not covered by Proposition 4.3) conclude our proof of Proposition 4.2 for all the exceptional cases. Therefore, \(\beta \notin B_4 \), and Theorem 1.2 holds.

\[\square\]

5. Open Questions

To conclude the paper, we pose a few open questions:

- What is the topology of \(B_k \) for \(k \geq 2 \)? In particular, what is the smallest limit point of \(B_k \)? Is it below or above the Komornik-Loreti constant introduced in [8]?

- What is the smallest \(q \) such that \(x = 1 \) has \(k \) \(q \)-expansions? (For \(k = 1 \) this is precisely the Komornik-Loreti constant.)

- What is the structure of \(B_{B_8} \cap \left(\frac{1+\sqrt{5}}{2}, q_f \right) \)? In view of the results of the present paper, knowing this would lead to a complete understanding of \(\text{card} \, \Sigma_q(x) \) for all \(q \leq q_f \) and all \(x \in I_q \).

- Let, as above,

\[
B_\infty = \bigcap_{k=1}^{\infty} B_k \cap B_{B_8} \cap B_{2^{a_0}}.
\]
By Theorem 1.3, q_f is the smallest element of B_∞. What is the second smallest element of B_∞? What is the topology of B_∞?

- In [1] the authors study the order in which periodic orbits appear in the set of points with unique q-expansion; they show that as $q \uparrow 2$, the order in which periodic orbits appear in the set of uniqueness is intimately related to the classical Sharkovskii ordering. Does a similar result hold in our case? That is, if $k > k'$ with respect to the usual Sharkovskii ordering, does this imply $B_k \subset B_{k'}$?

Acknowledgment. The authors are grateful to Vilmos Komornik for useful suggestions.

References

