q-MULTIPARAMETER-BERNOULLI POLYNOMIALS AND
q-MULTIPARAMETER-CAUCHY POLYNOMIALS BY JACKSON’S
INTEGRALS

Takao Komatsu
School of Mathematics and Statistics, Wuhan University, Wuhan, China
komatsu@whu.edu.cn

László Szalay
Institute of Mathematics, University of West Hungary, Sopron, Hungary
and
Department of Mathematics and Informatics, University J. Selye, Komarno,
Slovakia
szalay.laszlo@emk.nyme.hu

Received: 7/15/15, Revised: 1/6/16, Accepted: 5/25/16, Published: 6/10/16

Abstract
We define q-multiparameter-Bernoulli polynomials and q-multiparameter-Cauchy polynomials by using Jackson’s integrals, which generalize the previously known numbers, including poly-Bernoulli $B_n^{(k)}$ and the poly-Cauchy numbers of the first kind $c_n^{(k)}$ and of the second kind $d_n^{(k)}$. We investigate their properties connected with multiparameter Stirling numbers which generalize the original Stirling numbers. We also give the relations between q-multiparameter-Bernoulli polynomials and q-
multiparameter-Cauchy polynomials.

1. Introduction

Let n and k be integers with $n \geq 0$, and let $L = (l_1, \ldots, l_k)$ be a k-tuple of real numbers with $\ell := l_1 \cdots l_k \neq 0$ and $A = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ be a n-tuple of real numbers. Let q be a real number with $0 \leq q < 1$.

Jackson’s q-derivative with $0 < q < 1$ (see e.g., [1, (10.2.3)], [12]) is defined by

$$D_q f = \frac{d_q f}{d_q x} = \frac{f(x) - f(qx)}{(1 - q)x}$$
and Jackson’s q-integral ([1, (10.1.3)], [12]) is defined by
\[
\int_0^x f(t)d_qt = (1-q)x \sum_{n=0}^{\infty} f(q^n x)q^n.
\]
The Jackson integral gives a unique q-antiderivative within a certain class of functions. In particular, when $f(x) = x^m$ for some nonnegative integer m, then
\[
D_qf = \frac{x^m - q^m x^m}{(1-q)x} = [m]_q x^{m-1}
\]
and
\[
\int_0^x t^m d_qt = (1-q)x \sum_{n=0}^{\infty} q^m t^n q^n = (1-q)x^{m+1} \sum_{n=0}^{\infty} q^{n(m+1)} = x^{m+1} \frac{[m+1]_q}{[m+1]_q}.
\]
Here,
\[
[x]_q = \frac{1-q^x}{1-q}
\]
is the q-number with $[0]_q = 0$ (see e.g. [1, (10.2.3)], [12]). Note that $\lim_{q \to 1} [x]_q = x$.

Define poly-Bernoulli polynomials $B_{n,\rho,q}(z)$ with a parameter ρ by
\[
\frac{\rho}{1-e^{-\rho t}} \text{Li}_{k,q} \left(\frac{1-e^{-\rho t}}{\rho} \right) e^{-tz} = \sum_{n=0}^{\infty} B_{n,\rho,q}^{(k)}(z) \frac{t^n}{n!}, \tag{1}
\]
where $\text{Li}_{k,q}(z)$ is the q-polylogarithm function (see [16]) defined by
\[
\text{Li}_{k,q}(z) = \sum_{n=1}^{\infty} \frac{z^n}{[n]_q^k}.
\]
Notice that
\[
\lim_{q \to 1} B_{n,\rho,q}^{(k)}(z) = B_{n,\rho}^{(k)}(z),
\]
which is the poly-Bernoulli polynomial with a ρ parameter (see [6]), and
\[
\lim_{q \to 1} \text{Li}_{k,q}(z) = \text{Li}_{k}(z),
\]
which is the ordinary polylogarithm function, defined by
\[
\text{Li}_k(z) = \sum_{m=1}^{\infty} \frac{z^m}{m^k}. \tag{2}
\]
In addition, when \(z = 0 \), \(B_{n,\rho}^{(k)}(0) = B_{n,\rho}^{(k)} \) is the poly-Bernoulli number with a \(\rho \) parameter. When \(z = 0 \) and \(\rho = 1 \), \(B_{n,1}^{(k)}(0) = B_{n}^{(k)} \) is the poly-Bernoulli number (see [15]) defined by
\[
\text{Li}_k(1 - e^{-t}) = \sum_{n=0}^{\infty} B_n^{(k)} \frac{t^n}{n!}.
\] (3)

The poly-Bernoulli numbers are expressed as special values at negative arguments of certain combinations of multiple zeta values. The poly-Bernoulli numbers can be expressed in terms of the Stirling numbers of the second kind.
\[
B_n^{(k)} = \sum_{m=0}^{n} \frac{(-1)^{n-m}m!S_2(n,m)}{(m+1)^k} \quad (n \geq 0, \ k \geq 1)
\] ([15, Theorem 1]), where \(S_2(n,m) \) is the Stirling number of the second kind, see [7], determined by the falling factorial:
\[
x^n = \sum_{m=0}^{n} S_2(n,m)x(x-1)\cdots(x-m+1).
\]

The poly-Bernoulli numbers are extended to the poly-Bernoulli polynomials (see [3, 8]) and to the special multi-poly-Bernoulli numbers (see [11]). The Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence, i.e., a Sheffer sequence for the ordinary derivative operator.

Define the \(q \)-multiparameter-poly-Cauchy polynomials of the first kind \(c_{n,L,A,q}^{(k)}(z) \) by
\[
c_{n,L,A,q}^{(k)}(z) = \int_{0}^{l_1} \cdots \int_{0}^{l_k} (x_1 \cdots x_k - \alpha_0 - z) \cdots (x_1 \cdots x_k - \alpha_{n-1} - z) d_q x_1 \cdots d_q x_k.
\] (4)

Notice that
\[
\lim_{q \to 1} c_{n,L,A,q}^{(k)}(z) = c_{n,L,A}^{(k)}(z),
\]
which are the multiparameter-poly-Cauchy polynomials of the first kind. The idea of dealing with multiparameters \(\alpha_0, \alpha_1, \ldots, \alpha_{n-1} \) instead of 0, 1, \ldots, \(n-1 \) has already been considered in [25]. Namely, If \(l_1 = \cdots = l_k = 1 \) and \(z = 0 \), the number \(c_{n,(1,\ldots,1),A}^{(k)} = c_{n,A}^{(k)} \) has been studied to prove the convexity. It has been proven that \(c_{n,A}^{(k)} \) is log-convex, satisfying \((c_{n,A}^{(k)})^2 - c_{n-1,A}^{(k)} c_{n+1,A}^{(k)} \leq 0 \).

In addition, if \(\alpha_i = i\rho \) (\(i = 0, 1, \ldots, n-1 \)), then the number \(c_{n,A}^{(k)} \) is reduced to the poly-Cauchy numbers of the first kind with a parameter \(\rho \) (see [19]). Furthermore, if \(\rho = 1 \), then the number \(c_{n,A}^{(k)} \) is reduced to the poly-Cauchy number \(c_n^{(k)} \) (see [18]). If \(k = 1 \), then \(c_n^{(1)} = c_n \) is the classical Cauchy number (see [7, 27]). The
number \(c_n/n! \) is sometimes referred to as the Bernoulli number of the second kind (see [4, 13, 28]).

The poly-Cauchy numbers have been considered as analogues of the poly-Bernoulli numbers \(B_n^{(k)} \). The poly-Cauchy numbers of the first kind, \(c_n^{(k)} \), can be expressed in terms of the Stirling numbers of the first kind:

\[
c_n^{(k)} = \sum_{m=0}^{n} \frac{(-1)^{n-m} S_1(n, m)}{(m+1)^k} \quad (n \geq 0, \ k \geq 1)
\]

([18, Theorem 1]), where \(S_1(n, m) \) is the (unsigned) Stirling number of the first kind (see [7]), determined by the rising factorial:

\[
x(x+1) \cdots (x+n-1) = \sum_{m=0}^{n} S_1(n, m)x^m.
\]

(5)

Similarly, define the \(q \)-multiparameter-poly-Cauchy polynomials of the second kind \(\tilde{c}_n^{(k)}(z) \) by

\[
\tilde{c}_n^{(k)}(z) = \int_{0}^{t_1} \cdots \int_{0}^{t_k} (-x_1 \cdots x_k - \alpha_0 + z) \cdots (-x_1 \cdots x_k - \alpha_{n-1} + z) d_0 x_1 \cdots d_k x_k.
\]

(6)

If \(q \to 1, l_1 = \cdots = l_k = 1, \alpha_i = i \rho (i = 0, 1, \ldots, n-1) \) and \(z = 0 \), the number \(\tilde{c}_n^{(k)} \) is reduced to the poly-Cauchy numbers of the second kind with a parameter \(\rho \) (see [19]). Furthermore, if \(\rho = 1 \), then the number \(\tilde{c}_n^{(k)} \) is reduced to the poly-Cauchy numbers of the second kind \(c_n^{(k)} \) (see [18]). If \(k = 1 \), then \(c_n^{(1)} = \tilde{c}_n^{(1)} \) is the classical Cauchy number (see [7, 27]). The poly-Cauchy numbers of the second kind \(\tilde{c}_n^{(k)} \) can be expressed in terms of the Stirling numbers of the first kind by

\[
\tilde{c}_n^{(k)} = (-1)^n \sum_{m=0}^{n} \frac{S_1(n, m)}{(m+1)^k} \quad (n \geq 0, \ k \geq 1)
\]

([18, Theorem 4]). The generating function of the poly-Cauchy numbers of the second kind \(\tilde{c}_n^{(k)} \) is given by

\[
Lif_k(-\ln(1+t)) = \sum_{n=0}^{\infty} \frac{\tilde{c}_n^{(k)} t^n}{n!}
\]

(7)

([18, Theorem 5]).

The poly-Cauchy numbers (of the both kinds) are extended to the poly-Cauchy polynomials (see [14]), and to the poly-Cauchy numbers with a \(q \) parameter (see [19]). The corresponding poly-Bernoulli numbers with a \(q \) parameter can be obtained in [6]. A different direction of generalizations of Cauchy numbers is about
hypergeometric Cauchy numbers (see [21]). Arithmetical and combinatorial properties including sums of products have been studied (see [20, 23, 24]).

Various kinds of q-analogues or extensions have been studied. In [17], as generalizations of the poly-Cauchy numbers of the first kind $c_n^{(k)}$ and of the second kind $\tilde{c}_n^{(k)}$, by using Jackson’s q-integrals, q-analogues or extensions of the poly-Cauchy numbers of the first kind $c_{n,q}^{(k)}$ and of the second kind $\tilde{c}_{n,q}^{(k)}$ are introduced, and their properties are investigated. In [22], by using Jackson’s q-integrals, the concept about q-analogues or extensions of the poly-Bernoulli polynomials $B_{n,q}^{(k)}(z)$ with a parameter were also introduced.

In this paper, by using Jackson’s q-integrals, as essential generalizations of the previously known numbers and polynomials, including poly-Bernoulli numbers $B_n^{(k)}$, the poly-Cauchy numbers of the first kind $c_n^{(k)}$ and of the second kind $\tilde{c}_n^{(k)}$, we introduce the concept of q-analogues or extensions of the poly-Bernoulli polynomials $B_{n,p,q}^{(k)}(z)$ with a parameter, and the poly-Cauchy polynomials of the first kind $c_{n,q}^{(k)}$ and of the second kind $\tilde{c}_{n,q}^{(k)}$ with a parameter. We investigate their properties connected with the usual Stirling numbers and the weighted Stirling numbers. We also give the relations between generalized poly-Bernoulli polynomials and two kinds of generalized poly-Cauchy polynomials.

2. q-multiparameter-Cauchy Polynomials

For an n-tuple $A = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ of real numbers, define multiparameter Stirling numbers of the first kind $S_1(n, m, A)$ and of the second kind $S_2(n, m, A)$ by

$$ (t - \alpha_0)(t - \alpha_1) \cdots (t - \alpha_{n-1}) = \sum_{m=0}^{n} S_1(n, m, A)t^m $$

and

$$ \sum_{m=0}^{n} S_2(n, m, A)(t - \alpha_0)(t - \alpha_1) \cdots (t - \alpha_{m-1}) = t^n, $$

respectively (cf. [7, 9, 26]). If $\alpha_i = i\rho \ (i = 0, 1, \ldots, n - 1)$, then

$$ S_1(n, m, (0, \rho, \ldots, (n - 1)\rho)) = (-\rho)^{n-m}S_1(n, m), $$

$$ S_2(n, m, (0, \rho, \ldots, (n - 1)\rho)) = \rho^{n-m}S_2(n, m), $$

where $S_1(n, m)$ and $S_2(n, m)$ are the (unsigned) Stirling numbers of the first kind and the Stirling numbers of the second kind, respectively.

The q-multiparameter-poly-Cauchy polynomials of the first kind can be expressed explicitly in terms of the multiparameter Stirling numbers of the first kind.
Theorem 1. For all integers \(n \) and \(k \) with \(n \geq 0 \) and a real number \(q \) with \(0 < q < 1 \), we have

\[
c_n(k, L, A, q) = \sum_{m=0}^{\infty} S_1(n, m, A) \sum_{i=0}^{m} \binom{m}{i} \left(\frac{(-z)^i q^{m-i+1}}{m-i+1} \right). \]

Proof. By definitions of (4) and (8), we have

\[
c_n(k, L, A, q) = \int_0^{x_1} \cdots \int_0^{x_k} \sum_{m=0}^{\infty} S_1(n, m, A) (x_1 \cdots x_k - z)^m d_q x_1 \cdots d_q x_k
\]

\[
= \sum_{m=0}^{\infty} S_1(n, m, A) \sum_{i=0}^{m} \binom{m}{i} \left(\frac{(-z)^i}{i+1} \right) x_1^i \cdots x_k^i d_q x_1 \cdots d_q x_k
\]

\[
= \sum_{m=0}^{\infty} S_1(n, m, A) \sum_{i=0}^{m} \binom{m}{i} \left(\frac{(-z)^i}{m-i+1} \right) q^{m-i+1}. \]

\[
\square
\]

If \(z = 0 \), then we have the expression of the \(q \)-multiparameter-poly-Cauchy numbers of the first kind.

Corollary 1. For all integers \(n \) and \(k \) with \(n \geq 0 \) and a real number \(q \) with \(0 < q < 1 \), we have

\[
c_n(k, L, A, q) = \sum_{m=0}^{\infty} S_1(n, m, A) \frac{q^{m+1}}{m+1}. \]

Similarly, the \(q \)-multiparameter-poly-Cauchy polynomials of the second kind can be expressed explicitly in terms of the multiparameter Stirling numbers of the first kind. The proof is similar to that of Theorem 1 and is omitted.

Theorem 2. For all integers \(n \) and \(k \) with \(n \geq 0 \) and a real number \(q \) with \(0 < q < 1 \), we have

\[
\hat{c}_n(k, L, A, q) = \sum_{m=0}^{\infty} \left(-1 \right)^m S_1(n, m, A) \sum_{i=0}^{m} \binom{m}{i} \left(\frac{(-z)^i q^{m-i+1}}{m-i+1} \right). \]

If \(z = 0 \), then we have the expression of the \(q \)-multiparameter-poly-Cauchy numbers of the second kind.
Corollary 2. For all integers n and k with $n \geq 0$ and a real number q with $0 < q < 1$, we have
\[
\tilde{c}^{(k)}_{n,L,A,q} = \sum_{m=0}^{n} \frac{(-1)^m S_1(n, m, A)q^m}{[m+1]_q^k}.
\]

There are simple relations between two kinds of q-multiparameter-poly-Cauchy polynomials.

Theorem 3. For all integers n and k with $n \geq 1$ and a real number q with $0 < q < 1$, we have
\[
(-1)^n c^{(k)}_{n,L,A,q}(z) = \tilde{c}^{(k)}_{n,L,A,q}(z), \tag{10}
\]
\[
(-1)^n c^{(k)}_{n,L,A,q}(z) = c^{(k)}_{n,L,-A,q}(z), \tag{11}
\]
where $-A = (-\alpha_0, -\alpha_1, \ldots, -\alpha_{n-1})$.

Proof. We shall prove identity (11). The identity (10) is proven similarly and omitted. By the definition of $\tilde{c}^{(k)}_{n,L,A,q}(z)$, we see that
\[
(-1)^n c^{(k)}_{n,L,A,q}(z) = c^{(k)}_{n,L,-A,q}(z).
\]
\[
\Box
\]

3. q-multiparameter-poly-Bernoulli Polynomials

Define the q-multiparameter-poly-Bernoulli polynomials $B^{(k)}_{n,L,A,q}(z)$ by
\[
B^{(k)}_{n,L,A,q}(z) = \sum_{m=0}^{n} S_2(n, m, A) m! \sum_{i=0}^{m} \binom{m}{i} \frac{(-z)^i q^m-i+1}{[m-i+1]_q^k}. \tag{12}
\]

This is a generalization of poly-Bernoulli polynomials $B^{(k)}_{n}(z)$, defined in [24]. If $q \to 1$, $l_1 = \cdots = l_k = 1$ and $\alpha_i = i$ ($i = 0, 1, \ldots, n-1$), then the polynomial $B^{(k)}_{n,L,A,q}(z)$ are reduced to the polynomial $B^{(k)}_{n}(z)$ in [24].
By putting $z = 0$ in (12), the q-multiparameter-poly-Bernoulli numbers $B^{(k)}_{n,L,A,q}$ are given by

$$B^{(k)}_{n,L,A,q} = \sum_{m=0}^{n} \frac{S_2(n, m, A) m! q^{m+1}}{[m+1]_q^k}. \quad (13)$$

Since the orthogonality relations

$$\sum_{k=i}^{n} S_1(n, k, A) S_2(k, i, A) = \sum_{k=i}^{n} S_1(k, i, A) S_2(n, k, A) = \delta_{n,i}, \quad (14)$$

where $\delta_{n,i}$ is the Kronecker’s delta, we obtain the inverse relation

$$f_n = \sum_{m=0}^{n} S_1(n, m, A) g_m \iff g_n = \sum_{m=0}^{n} S_2(n, m, A) f_m. \quad (15)$$

Theorem 4. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy polynomials, we have

$$\sum_{m=0}^{n} S_1(n, m, A) B^{(k)}_{m,L,A,q}(z) = n! \sum_{i=0}^{n} \binom{n}{i} \frac{(-z)^i q^{n-i+1}}{[n-i+1]_q^k}, \quad (16)$$

$$\sum_{m=0}^{n} S_2(n, m, A) c^{(k)}_{m,L,A,q}(z) = \sum_{i=0}^{n} \binom{n}{i} \frac{(-z)^i q^{n-i+1}}{[n-i+1]_q^k}, \quad (17)$$

$$\sum_{m=0}^{n} S_2(n, m, A) z^{(k)}_{m,L,A,q}(z) = (-1)^n \sum_{i=0}^{n} \binom{n}{i} \frac{(-z)^i q^{n-i+1}}{[n-i+1]_q^k}. \quad (18)$$

Remark. If $q \to 1$ and $\alpha_i = i \rho$ ($i = 0, 1, \ldots, n-1$), then Theorem 4 is reduced to Theorem 3.2 in [6].

Proof. By (12), applying (15) with

$$f_m = m! \sum_{i=0}^{m} \binom{m}{i} \frac{(-z)^i q^{m-i+1}}{[m-i+1]_q^k} \quad \text{and} \quad g_n = B^{(k)}_{n,L,A,q}(z),$$

we get the identity (16). Similarly, by Theorem 1 and Theorem 2 we have the identities (17) and (18), respectively.

If we put $z = 0$ in Theorem 4, we have the identities for appropriate numbers.

Corollary 3. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy
numbers, we have
\[
\sum_{m=0}^{n} S_1(n, m, A) B_{m,L,A,q}^{(k)} = \frac{n! q^{n+1}}{[n+1]_q}, \tag{19}
\]
\[
\sum_{m=0}^{n} S_2(n, m, A) c_{m,L,A,q}^{(k)} = \frac{\ell^n q^{n+1}}{[n+1]_q}, \tag{20}
\]
\[
\sum_{m=0}^{n} S_2(n, m, A) \tilde{c}_{m,L,A,q}^{(k)} = (-1)^n \frac{\ell^n q^{n+1}}{[n+1]_q}. \tag{21}
\]

4. Several Relations of q-poly-Bernoulli Polynomials and q-poly-Cauchy Polynomials

Theorem 5. For any z we have
\[
B_{n,L,A,q}^{(k)}(z) = \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} m! S_2(n, m, A) S_2(m, \mu, A) c_{\mu,L,A,q}^{(k)}(z),
\]
\[
B_{n,L,A,q}^{(k)}(z) = \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} (-1)^m m! S_2(n, m, A) S_2(m, \mu, A) \tilde{c}_{\mu,L,A,q}^{(k)}(z),
\]
\[
c_{n,L,A,q}^{(k)}(z) = \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{1}{m!} S_1(n, m, A) S_1(m, \mu, A) B_{\mu,L,A,q}^{(k)}(z),
\]
\[
\tilde{c}_{n,L,A,q}^{(k)}(z) = \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{(-1)^m}{m!} S_1(n, m, A) S_1(m, \mu, A) B_{\mu,L,A,q}^{(k)}(z).
\]

Remark. If $\rho = 1$ and $q \to 1$ and $\alpha_i = i \rho$ ($i = 0, 1, \ldots, n - 1$), then Theorem 5 is reduced to Theorem 4.1 in [24]. A different generalization without Jackson’s integrals is discussed in [23].

Proof. We shall prove the first and the fourth identities. The other two are proven similarly and omitted. By (17) in Theorem 4 and (12), we have
\[
B_{n,L,A,q}^{(k)}(z) = \sum_{m=0}^{n} S_2(n, m, A) m! \sum_{\mu=0}^{m} S_2(m, \mu, A) c_{\mu,L,A,q}^{(k)}(z)
\]
\[
= \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} m! S_2(n, m, A) S_2(m, \mu, A) c_{\mu,L,A,q}^{(k)}(z).
\]
By (16) in Theorem 4 and Theorem 2, we have

\[
C_{n,L,A,q}^{(k)}(z) = \sum_{m=0}^{n} \frac{(-1)^m}{m!} S_1(n, m, A) \sum_{\mu=0}^{m} S_1(m, \mu, A) B_{\mu,L,A,q}^{(k)}(z) \\
= \sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{(-1)^m}{m!} S_1(n, m, A) S_1(m, \mu, A) B_{\mu,L,A,q}^{(k)}(z).
\]

\[\square\]

Acknowledgement This work has been partly done when the first author stayed in University of West Hungary by Balassi Institute Program in 2014. He was also supported by a grant of Wuhan University and by the Hubei Provincial Program.

References

22. T. Komatsu, q-poly-Bernoulli numbers and q-poly-Cauchy numbers with a parameter by Jackson’s integrals, Indag. Math. 27 (2016), 100-111.

