Abstract

We describe a new identity involving sums of powers of Fibonacci numbers and use this identity to prove that a certain family of combinatorial sequences converges, pointwise, to the Fibonacci sequence.

1. Introduction

We let F represent the Fibonacci sequence where $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, and $F_{-n} = (-1)^n F_n$ for $n \in \mathbb{N}$. We then have $F_n = F_{n-1} + F_{n-2}$ for all $n \in \mathbb{Z}$. Our first main result is the following identity.

Theorem 1. For all $m \in \mathbb{Z}$ and $k \in \mathbb{N}$,

$$\sum_{i=1}^{k+1} \left(F_{m-1} + (-1)^{k+1-i} \cdot F_{m-k+i-3} \right) \cdot \left(\frac{F_{m+1}}{F_m} \right)^i = F_{m+1} \cdot (F_{k+3} - 1).$$

If we clear denominators, the identity becomes

$$\sum_{i=1}^{k+1} \left(F_{m-1} + (-1)^{k+1-i} \cdot F_{m-k+i-3} \right) \cdot (F_{m+1}^{i} F_{m}^{k+1-i}) = F_{m+1}^{k+1} F_{m+1} \cdot (F_{k+3} - 1).$$

We could not find a similar or related identity in the literature, so this appears to be new. The closest identity we could find is the amazing four-parameter identity

$$F_{m}^{k} F_{n} = (-1)^{kr} \sum_{h=0}^{k} \binom{k}{h} (-1)^{h} F_{r}^{h} F_{r+m}^{k-h} F_{n+kr+hm}.$$
which can be used to produce many interesting known identities (see [5]).

We discovered the identity in Theorem 1 while studying rational base representations of natural numbers (see [1], [8], [3], [4], [6] or [2] for instance), which explains why the identity involves powers of \(\frac{F_{m+1}}{F_m} \). While these representations are quite complex from a language point of view, there is an elementary construction of an edge-labeled, infinite, rooted tree whose edge labels give the rational base representation of the integer associated to each vertex (see [1], [7] or [2]). It turns out that when using the rational base \(\frac{F_{m+1}}{F_m} \), the number of nodes lying distance \(n \) from the root in the associated tree is given by the sequence \(A^m \) with \(A^m_1 = 1 \) and

\[
A^m_{n+1} = \left[\frac{F_{m+1}}{F_m} - \frac{F_m}{F_{m-1}} \cdot \sum_{i=1}^{n} A^m_i \right] = \left[\frac{F_{m-1}}{F_m} \cdot \sum_{i=1}^{n} A^m_i \right]
\]

where \([x]\) represents the least integer larger than \(x \) (see [1] or [2]).

Interestingly, as \(m \) gets larger, the family of sequences \(\{A^m\} \) converges pointwise to the Fibonacci sequence \(F \). More precisely, we have the following theorem.

Theorem 2. Let \(\{A^m \mid m \geq 1\} \) be the family of sequences defined in (1). For every \(n \in \mathbb{N} \) with \(n \geq 1 \), there exists \(M \in \mathbb{N} \) such that \(A^m_n = F_n \) for all \(m \geq M \).

Thus, we have produced a family of sequences (with combinatorial interest) that can match the Fibonacci sequence for as many terms as we wish. Figure 1 shows the first 15 terms of the sequences \(A^m \) where \(m \in \{1, \ldots, 10\} \). The numbers in blue represent coincidence with \(F \). Note that \(A^{10} \) matches the Fibonacci sequence up to \(n = 15 \) (in fact \(n = 19 \) is the first index with \(A^{10}_n \neq F_n \)).

We also note that since \(\frac{F_{m-1}}{F_m} \rightarrow \frac{1}{\phi} \) as \(m \rightarrow \infty \) (where \(\phi \) represents the golden

<table>
<thead>
<tr>
<th>(A^m) (\backslash n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(A^2)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^3)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^4)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^5)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^6)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^7)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^8)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^9)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
<tr>
<td>(A^{10})</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
</tbody>
</table>

Figure 1: The first 15 terms of the sequences \(A^m \) for \(m \in \{1, \ldots, 10\} \). For instance, see A000007, A011782, and A073941 in [9].
ratio, \(\phi = \frac{1 + \sqrt{5}}{2} \), Theorem 2 implies that

\[
F_{n+1} = \left\lfloor \frac{1}{\phi} \sum_{i=1}^{n} F_i \right\rfloor
\]

with \(F_0 = 0 \) and \(F_1 = 1 \). While we could not find a citation for this formula, it must be known as it follows from well known facts. We know that \(F_{n+2} = \text{round}(\phi \cdot F_{n+1}) \) so that \(\frac{1}{\phi} F_{n+2} - \frac{1}{\phi^2} < F_{n+1} < \frac{1}{\phi} F_{n+2} + \frac{1}{\phi^2} \), which implies \(\frac{1}{\phi} F_{n+2} < F_{n+1} + \frac{1}{\phi} \) and \(F_{n+1} - \frac{1}{\phi} < \frac{1}{\phi} F_{n+2} \). Thus

\[
F_{n+1} - 1 < F_{n+1} - \frac{3}{2\phi} < \frac{1}{\phi} F_{n+2} - \frac{1}{\phi} F_{n+1} < \frac{1}{\phi} F_{n+2} < F_{n+1}
\]

so that

\[
\left\lfloor \frac{1}{\phi} \sum_{i=1}^{n} F_i \right\rfloor = \left\lfloor \frac{1}{\phi} (F_{n+2} - 1) \right\rfloor = F_{n+1}
\]

where the first equality is the well known formula for the sum of the first \(n \) Fibonacci numbers.

This note is organized as follows. In Section 2, we prove Theorem 1 using elementary techniques. In Section 3, we introduce the terminology of \(\mathbb{F}_2 \)-representations of natural numbers and state results from [1] in order to prove Theorem 2.

2. Proof of Theorem 1

To prove Theorem 1, we let \(m \in \mathbb{Z} \) and use induction on \(k \). For ease of notation, we define \(y_m := F_{m+1} F_{m}^{-1} \). We can check that the identity holds for \(k = 0 \) and \(k = 1 \). Indeed, we have (since \(F_3 - 1 = 2 - 1 = 1 \)):

\[
\sum_{i=1}^{1} (F_{m-1} + (-1)^{i-1} \cdot F_{m+i-3}) \cdot y_m^i = (F_{m-1} + F_{m-2}) y_m = F_{m+1} \cdot (F_3 - 1),
\]

and

\[
\sum_{i=1}^{2} (F_{m-1} + (-1)^{2i-1} \cdot F_{m+i-4}) \cdot y_m^i = (F_{m-1} - F_{m-3}) y_m + (F_{m-1} + F_{m-2}) y_m^2
\]

\[
= F_{m-2} \cdot y_m + F_m \cdot y_m^2
\]

\[
= F_{m+1} (F_{m-2} + F_{m+1})
\]

\[
= \frac{F_{m+1} (F_m - F_{m-1} + F_{m} + F_{m-1})}{F_m}
\]

\[
= F_{m+1} \cdot 2 = F_{m+1} \cdot (F_4 - 1).
\]

Now, let \(k \in \mathbb{N} \) with \(k \geq 1 \) and assume that the identity holds for \(j \in \{k-1, k\} \).
Notice that
\[F_{m+1}(F_{k+4} - 1) = F_{m+1} + \frac{F_{m+1}(F_{k+3} - 1)}{A} + \frac{F_{m+1}(F_{k+2} - 1)}{B}. \]

Applying the inductive hypothesis to the quantities \(A\) and \(B\) in the previous equality yields
\[A = \sum_{i=1}^{k+1} (F_{m-1} + (-1)^{k+1-i}F_{m-k+i-3})y_m^i \]
\[B = \sum_{i=1}^{k} (F_{m-1} + (-1)^{k-i}F_{m-k+i-2})y_m^i \]
so that
\[A + B = (F_{m-1} + F_{m-2}) \cdot y_m^{k+1} + \sum_{i=1}^{k} (2F_{m-1} + (-1)^{k-i}(F_{m-k+i-2} - F_{m-k+i-3}))y_m^i. \]

Rearranging sums and applying the Fibonacci identity leaves us with
\[A + B = F_{m-2}y_m^{k+1} + F_{m-1}y_m^{k+1} + \sum_{i=1}^{k} F_{m-1}y_m^i + \sum_{i=1}^{k} (F_{m-1} + (-1)^{k-i}F_{m-k+i-4})y_m^i. \]

In the expression above, since \(F_{m+1} - F_m = F_{m-1}\), we know that
\[C = F_{m-1} \sum_{i=1}^{k+1} y_m^i = C = F_{m-1} \cdot \left(\frac{y_m^{k+2} - 1}{y_m - 1} \right) = F_{m-1} \cdot \left(\frac{F_m y_m^{k+2} - F_m}{F_{m+1} - F_m} - 1 \right) \]
\[= F_{m-1} \cdot \left(\frac{F_m y_m^{k+2} - F_m}{F_{m+1} - F_m} \right). \]

Therefore, we have
\[F_{m+1}(F_{k+4} - 1) = F_{m+1} + F_{m-2}y_m^{k+1} + F_m y_m^{k+2} - F_m - F_{m-1} + D \]
\[= F_{m-2}y_m^{k+1} + F_m y_m^{k+2} + D \]
since \(F_{m+1} - F_m - F_{m-1} = 0\). Next, \(F_{m-2} = F_{m-1} - F_{m-3}\) and \(F_m = F_{m-1} + F_{m-2}\), so that
\[F_{m+1}(F_{k+4} - 1) = (F_{m-1} - F_{m-3})y_m^{k+1} + (F_{m-1} + F_{m-2})y_m^{k+2} + D \]
\[= \sum_{i=1}^{k+2} (F_{m-1} + (-1)^{k-i}F_{m-k+i-4})y_m^i \]
\[= \sum_{i=1}^{k+2} (F_{m-1} + (-1)^{k+2-i}F_{m-(k+1)+i-3})y_m^i, \]
as required. \(\square\)
3. \mathbb{E}_q-representations

For this section, we fix $p, q \in \mathbb{N}$ such that $p > q \geq 1$ and $\gcd(p, q) = 1$. For any $n \in \mathbb{N}$, we say $(n_0, n_1, \ldots, n_k)_q$ is a \mathbb{E}_q-representation for n if $0 \leq n_i < p$ for all i and $n = \sum_{i=0}^{k} n_i \left(\frac{p}{q}\right)^i$; in this case we write $n = (n_0, n_1, \ldots, n_k)_q$. We note that, unlike base-b representations (with $b > 1$ an integer), not every string of digits, $(d_0, d_1, \ldots, d_k)_q$, yields a natural number. However, it is known from [1] (and earlier, see A024629 in [9] for instance) that every natural number n has a unique \mathbb{E}_q-representation. Hence we can define $\text{len}_q(n) = k+1$ when $n = (n_0, n_1, \ldots, n_k)_q$. If the length of $n+1$ is larger than the length of n, i.e., $n \in \mathbb{N}$ satisfies $\text{len}_q(n+1) - \text{len}_q(n) = 1$, we say $n+1$ is new-length element (or nl-element for short).

Many properties of \mathbb{E}_q-representations (and related representations) are studied in [1] and [3], where the authors define an infinite, rooted tree, called $I_{p/q}$ that describes the \mathbb{E}_q-representations. A combinatorial construction of this tree is also given in [2] or [7]. In that tree, the nl-elements correspond to the nodes with the least label of any fixed distance from the root; these lie on the left branch of the tree when drawn as in [1].

To prove Theorem 2, we need the following results about \mathbb{E}_q-representations. We omit the proofs as these may be found in, or are straightforward consequences of, Proposition 21 and Corollary 23 in [1], though our terminology differs.

Lemma 1. Let n be a natural number with $n = (n_0, n_1, \ldots, n_k)_q$. Then n is an nl-element if and only if $n = 1$ or $n_0 = 0$, $0 \leq n_i < q$ for $1 \leq i \leq k-1$ and $n_k = q$.

Next, let $g : \mathbb{N} \rightarrow \mathbb{N}$ be defined by $g(n) = p \left\lfloor \frac{n}{q} \right\rfloor$.

Proposition 1. The sequence (K_1, K_2, \ldots) of nl-elements is given by $K_1 = 1$ and $K_i = g(K_{i-1})$ for all $i > 1$.

Corollary 1. For $k > 1$, the number of natural numbers with \mathbb{E}_q-representations of length k is given by $K_{k+1} - K_k$. There are $K_2 = p$ such representations of length 1 (this includes the natural number 0).

Corollary 2. Let (K_1, K_2, \ldots) be the sequence of nl-elements. Then for $k \geq 2$, $K_{k+1} - K_k = p a_k$ where $a_1 = 1$ and

$$a_{n+1} = \left\lfloor \frac{p-q}{q} \cdot \sum_{i=1}^{n} a_i \right\rfloor.$$

3.1. Rational Fibonacci Representations

Fix $m > 1$. By definition, we have $F_{m+1} > F_m$, and it is well known that $\gcd(F_{m+1}, F_m) = 1$. Consequently, we can consider \mathbb{E}_q-representations where $p =
F_{m+1} and $q = F_m$. For the remainder of this section, we let $p = F_{m+1}$ and $q = F_m$ and call the associated $\frac{p}{q}$-representations simply F_m-representations. The following lemma allows us to prove Theorem 2.

Lemma 2. Let $m, k \in \mathbb{N}$ with $k < m-2$. The F_m-representation of $F_{m+1}(F_{k+3}-1)$ is given by $(n_0, n_1, \ldots, n_{k+1})_{\frac{p}{q}}$ where $n_0 = 0$, and

$$n_i := F_{m-1} + (-1)^{k+1-i}F_{m-k+i-3}$$

for each $1 \leq i \leq k + 1$. Furthermore $K_{k+2} = F_{m+1}(F_{k+3}-1)$.

Proof. Let $n = (n_0, n_1, \ldots, n_{k+1})_{\frac{p}{q}}$. First, we note that $n_0 = 0$ and we check that $n_{k+1} = F_{m-1} + F_{m-2} = F_m$. Also, since $k < m - 2$ and $i \leq k + 1$ we have $0 \leq F_{m-k+i-3} \leq F_m$. Thus, we see that

$$0 \leq F_{m-1} - F_{m-k+i-3} \leq n_i \leq F_{m-1} + F_{m-k+i-3} < F_{m-1} + F_{m-2} = F_m$$

for $1 \leq i \leq k$. According to Lemma 1, $n = K_{k+2}$, and Theorem 2 implies that $n = F_{m+1}(F_{k+3}-1)$.

Proof of Theorem 2. Let $n \in \mathbb{N}$ with $n \geq 1$. Then, choose $M = n + 3$. Then for any $m \geq M$ consider the F_m-representations of natural numbers and the associated sequence of n-elements. According to Lemma 2, we have $K_{k+2} = F_{m+1}(F_{k+3}-1)$ for all $1 \leq k \leq n$. In particular, we have

$$K_{n+1} - K_n = F_{m+1}(F_{n+2} - 1) - F_{m+1}(F_{n+1} - 1) = F_{m+1}(F_{n+2} - F_{n+1}) = F_{m+1}F_n.$$

Furthermore, by Corollary 2, we have

$$K_{n+1} - K_n = F_{m+1}A_n^m$$

where A^m is defined in equation (1). Since $F_{m+1} \neq 0$, we have $F_n = A_n^m$. By definition $A_1^m = F_1$ and so the result holds.

Therefore, the family of sequences $\{A^m\}$ converges pointwise to F. Moreover, by Corollary 1 and Corollary 2, we see that A^m counts the number of multiples of $p = F_{m+1}$ having F_m-representations of length k, giving these sequences a combinatorial interpretation. Moreover, in terms of the tree $I_{p/q}$ defined in [1], the sequence A^m gives the number of vertices at fixed distances from the root. Finally, it can be checked (using methods similar to those describing equation 2 in the introduction) that $A^m \neq F$ for all m.

Acknowledgements. We would like to thank the anonymous referee for helpful comments that clarified and shortened this note.
References

