ON A GENERALIZATION OF THE CAUCHY-DAVENPORT THEOREM

Matt DeVos

Math Dept., Simon Fraser University, Burnaby, British Columbia, Canada
mdevos@sfu.ca

Received: 11/15/15, Revised: 12/27/15, Accepted: 1/15/16, Published: 1/21/16

Abstract

A generalization of the Cauchy-Davenport Theorem to arbitrary finite groups was suggested by Károlyi and proved independently by Károlyi and Wheeler. Here we give a short proof of the following small extension of this result (which also applies to infinite groups): If A, B are finite nonempty subsets of a (multiplicatively written) group G then $|AB| \geq \min \{p(G), |A| + |B| - 1\}$ where $p(G)$ denotes the smallest order of a nontrivial finite subgroup of G, or ∞ if no such subgroups exist.

1. The Result

The following famous theorem discovered independently by Cauchy [1] and Davenport [2] is one of the founding theorems in additive combinatorics and the starting point for this work.

Theorem 1 (Cauchy-Davenport). Let p be prime and let $A, B \subseteq \mathbb{Z}/p\mathbb{Z}$ be nonempty. Then the set $A + B = \{a + b \mid a \in A \text{ and } b \in B\}$ satisfies the following bound:

$$|A + B| \geq \min \{p, |A| + |B| - 1\}$$

We will be interested in more general groups G which we write multiplicatively. If $A, B \subseteq G$ then we define $AB = \{ab \mid a \in A \text{ and } b \in B\}$, and for $g \in G$ we abbreviate $\{g\}A$ by gA and $A\{g\}$ by Ag. Following Károlyi we will generalize the above theorem to arbitrary groups G by giving a similar lower bound on $|AB|$ except with “p” replaced by the parameter $p(G)$, which we define to be the order of the smallest nontrivial finite subgroup of G, or ∞ if no such subgroups exist. Namely, we prove the following.

Theorem 2. If A, B are finite nonempty subsets of G then

$$|AB| \geq \min \{p(G), |A| + |B| - 1\}.$$
results: Károlyi used group extensions (and also generalized Vosper’s Theorem) while Wheeler utilized the Feit-Thompson Odd Order Theorem and the structure of solvable groups. Our approach is based on a transform which seems to have first appeared in a paper of Kemperman [4] and is by comparison quite elementary.

Proof of Theorem 2. Suppose (for a contradiction) that the theorem is false and choose a counterexample \((A, B)\) so that:

1. \(|AB|\) is minimum,
2. \(|A| + |B|\) is maximum subject to 1,
3. \(|A|\) is minimum subject to 1 and 2.

Note that our assumptions imply \(|A| \leq |B|\) as otherwise the pair \((B^{-1}, A^{-1})\) contradicts the choice of \((A, B)\) (since \(|B^{-1}A^{-1}| = |(AB)^{-1}| = |AB|\)). If \(|A| = 1\) then \(|AB| = |B| = |A| + |B| - 1\) giving us a contradiction. So \(|A| \geq 2\) and we may choose \(g \in G \setminus \{1\}\) so that \(Ag \cap A \neq \emptyset\). If \(Ag = A\) then \(A\) is a union of left \(\langle g \rangle\) cosets and we have the contradiction \(|AB| \geq |A| \geq p(G)\). It follows that \(Ag \cap A\) is a proper nonempty subset of \(A\). Next consider the two pairs of sets:

\[(A \cap Ag, B \cup g^{-1}B) \quad (A \cup Ag, B \cap g^{-1}B)\]

It follows from basic principles that the product set associated to each of these pairs is a subset of \(AB\) (ex. if \(x \in A \cup Ag\) and \(y \in B \cap g^{-1}B\) then either \(x \in A\) so \(xy \in AB\) or \(x \in Ag\) so \(xy \in Ag \cdot g^{-1}B = AB\). If \(B \cap g^{-1}B = \emptyset\) then we have the contradiction \(|AB| \geq |(A \cap Ag)(B \cup g^{-1}B)| \geq |B \cup g^{-1}B| = 2|B| \geq |A| + |B|\). Therefore all four of the sets appearing in our two pairs are nonempty. If \(|A \cup Ag| + |B \cap g^{-1}B| > |A| + |B|\) then the pair \((A \cup Ag, B \cap g^{-1}B)\) contradicts the choice of \((A, B)\) (this pair is also a counterexample since \(|(A \cup Ag)(B \cap g^{-1}B)| \leq |AB| < \min\{p(G), |A| + |B| - 1\} \leq \min\{p(G), |A \cup Ag| + |B \cap g^{-1}B| - 1\}\). It follows from this and \(|A \cap Ag| + |A \cup Ag| + |B \cup g^{-1}B| + |B \cap g^{-1}B| = 2|A| + 2|B|\) that \(|A \cap Ag| + |B \cup g^{-1}B| \geq |A| + |B|\). However, now the pair \((A \cap Ag, B \cup g^{-1}B)\) contradicts the choice of \((A, B)\) by similar reasoning, and this completes the proof.

\[\square\]

References

