Korovkin Sets and Mean Ergodic Theorems

Toshihiko Nishishiraho
Department of Mathematical Sciences, University of the Ryukyus,
Nishihara-Cho, Okinawa 903-0213, Japan.
e-mail: nisiraho@sci.u-ryukyu.ac.jp

Received September 24, 1996
Revised manuscript received April 17, 1997

Korovkin-type theorems are established, and consequently mean ergodic theorems are obtained.

1. Introduction

Let E be a normed linear space with its dual space E^* and let $B[E]$ denote the normed algebra of all bounded linear operators of E into itself with the identity operator I. Let \mathcal{K} be a subset of $B[E]$ and let $T \in \mathcal{K}$. A subset K of E is said to be a \mathcal{K}-Korovkin set for T if for any bounded sequence $\{T_n\}$ in \mathcal{K}, the relation

$$\lim_{n \to \infty} \|T_n(g) - T(g)\| = 0 \quad \text{for all } g \in K$$

implies that

$$\lim_{n \to \infty} \|T_n(f) - T(f)\| = 0 \quad \text{for all } f \in E.$$

Let \mathcal{L} be a subset of E^* and let $\mu \in \mathcal{L}$. A subset K of E is said to be an \mathcal{L}-Korovkin set for μ if for any bounded sequence $\{\mu_n\}$ in \mathcal{L}, the relation

$$\lim_{n \to \infty} \mu_n(g) = \mu(g) \quad \text{for all } g \in K$$

implies that

$$\lim_{n \to \infty} \mu_n(f) = \mu(f) \quad \text{for all } f \in E.$$

For the background of the Korovkin-type approximation theory, see the recent book of Altomare and Campiti [2], in which an excellent source and a vast literature of this theory can be found (cf. [3], [6], [7]).

The purpose of this paper lies in considering \mathcal{K} and \mathcal{L}-Korovkin sets under certain requirements from a mean ergodic point of view. For the fundamental results about the ergodic theory, see [4; VIII] and for further extensive treatments of ergodic theorems, we refer to [8].

2. \mathcal{K} and \mathcal{L}-Korovkin sets and mean ergodic theorems

If S is a subset of E, then S^\perp denotes the annihilator of S. That is,

$$S^\perp = \{\mu \in E^* : \mu(f) = 0 \quad \text{for all } f \in S\}.$$
If \mathcal{L} is a subset of E^*, then we define
\[\mathcal{L}_\perp = \{ f \in E : \mu(f) = 0 \quad \text{for all } \mu \in \mathcal{L} \}, \]
which is called the annihilator of \mathcal{L}. If T is an operator in $B[E]$, then \mathcal{R}_T denotes the range of $I - T$.

We shall need the following basic result.

Lemma 2.1 (see [9; Theorem 4.6.1]). If S is a linear subspace of E, then $(S^\perp)_\perp$ coincides with the closure of S.

Let $\mu \in E^*$ and $T \in B[E]$. Then we say that μ is T-invariant if $\mu(T(f)) = \mu(f)$ for every $f \in E$, i.e., μ belongs to \mathcal{R}_T^\perp. Note that μ is T-invariant if and only if it is a fixed point of the adjoint operator T^* of T, i.e., $T^*(\mu) = \mu$.

From now on, let e be any fixed non-zero element in E, and we set
\[\mathfrak{X} = \{ L \in B[E] : L(e) = e \}, \]
which is a closed convex subset of $B[E]$. Let φ be an element in E^* with $\varphi(e) = 1$, and we define
\[P(f) = \varphi(f)e \quad \text{for all } f \in E. \quad (2.1) \]
Evidently, P is a projection operator on E belonging to \mathfrak{X} and φ is P-invariant.

Let $T, L \in B[E]$ and $n = 1, 2, 3, \ldots$. Then we define
\[\sigma_{n,T} = \frac{1}{n} \sum_{i=0}^{n-1} T^i, \]
which is called the n-th Cesàro mean operator of T, and T is said to be norm mean stable with L if
\[\lim_{n \to \infty} \| \sigma_{n,T}(f) - L(f) \| = 0 \quad \text{for all } f \in E. \quad (2.2) \]

The condition (2.2) implies that L is necessarily a projection operator on E and $TL = LT = L$. Furthermore, the mean ergodic theorem of Sine [16] (cf. [15]) asserts that if E is a Banach space and if $\|T\| \leq 1$, then T is norm mean stable with some $L \in B[E]$ if and only if the set of all fixed points of T separates the set of all fixed points of T^*.

Theorem 2.2. Let $T \in B[E]$ and suppose that φ is T-invariant.

(a) If the annihilator of \mathcal{R}_T is spanned by φ, then \mathcal{R}_T is a \mathfrak{X}-Korovkin set for P.

(b) If $T \in \mathfrak{X}$,
\[\lim_{n \to \infty} \frac{\| T^n(f) \|}{n} = 0 \quad \text{for every } f \in E \quad (2.3) \]
and
\[\sup_{n \geq 1} \| \sigma_{n,T} \| < \infty, \quad (2.4) \]

then the converse of (a) is also true.
Proof. (a) Let \(\{ L_n \} \) be a bounded sequence in \(\mathcal{X} \) such that for every \(g \in \mathcal{R}_T \), \(\lim_{n \to \infty} \| L_n(g) - P(g) \| = 0 \), which is equivalent to \(\lim_{n \to \infty} \| L_n(g) \| = 0 \) because of \(P(g) = 0 \). Let \(\epsilon > 0 \) and \(f \in \mathcal{E} \). Then, by Lemma 2.1, there exists an element \(h \in \mathcal{R}_T \) such that \(\| f - P(f) - h \| < \epsilon \). Since \(L_nP = P \) for all \(n \), we have

\[
\| L_n(f) - P(f) \| \leq \| L_n(f) - P(f) - L_n(h) \| + \| L_n(h) \|
\]

\[
\leq \| L_n \| \| f - P(f) - h \| + \| L_n(h) \| < \epsilon \| L_n \| + \| L_n(h) \|,
\]

and so \(\lim_{n \to \infty} \| L_n(f) - P(f) \| = 0 \) by virtue of \(\sup_n \| L_n \| < \infty \) and \(\lim_{n \to \infty} \| L_n(h) \| = 0 \). Therefore, \(\mathcal{R}_T \) is an \(\mathcal{X} \)-Korovkin set for \(P \).

(b) Suppose that \(T \in \mathcal{X} \), (2.3) and (2.4) hold. Then \(\{ \sigma_{n,T} \} \) is a bounded sequence in \(\mathcal{X} \) satisfying \(\lim_{n \to \infty} \| \sigma_{n,T}(f - T(f)) \| = 0 \) for all \(f \in \mathcal{E} \), since

\[
\sigma_{n,T}(I - T) = \frac{1}{n}(I - T^n) \quad (n = 1, 2, 3, \ldots).
\]

(2.5)

Assume now that \(\mathcal{R}_T \) is a \(\mathcal{X} \)-Korovkin set for \(P \). Then we have that \(\lim_{n \to \infty} \| \sigma_{n,T}(f) - P(f) \| = 0 \) for every \(f \in \mathcal{E} \). Let \(\mu \) be an arbitrary element in \(\mathcal{R}_T \). Then for all \(f \in \mathcal{E} \), we have

\[
\lim_{n \to \infty} \mu(\sigma_{n,T}(f)) = \mu(P(f)) = \varphi(f)\mu(e),
\]

which implies \(\mu(f) = \mu(e)\varphi(f) \), since

\[
\mu(\sigma_{n,T}(f)) = \mu(f) \quad (n = 1, 2, 3, \ldots).
\]

Thus, \(\mathcal{R}_T^+ \) is spanned by \(\varphi \).

Remark 2.3. If \(T \) is power bounded, i.e., \(\sup_{n \geq 1} \| T^n \| < \infty \), then (2.3) and (2.4) automatically hold. Also, by (2.5), (2.2) implies (2.3).

As a consequence of Theorem 2.2, we have the following.

Corollary 2.4. Let \(T \) be an operator in \(\mathcal{X} \) satisfying (2.3), (2.4) and \(T^*(\varphi) = \varphi \). Then the following statements are equivalent:

(a) \(\mathcal{R}_T^+ \) is spanned by \(\varphi \).

(b) \(\mathcal{R}_T \) is a \(\mathcal{X} \)-Korovkin set for \(P \).

(c) \(T \) is norm mean stable with \(P \).

Let \(\mathcal{L} \) be a subset of \(E^* \) and \(\mu \in \mathcal{L} \). Then an operator \(T \in B[\mathcal{E}] \) is said to be \(\mathcal{L} \)-uniquely ergodic with \(\mu \) if \(\mu \) is only one \(T \)-invariant functional in \(\mathcal{L} \), or equivalently, \(T^* \) has exactly one fixed point \(\mu \) in \(\mathcal{L} \), i.e.,

\[
\{ \lambda \in \mathcal{L} : T^*(\lambda) = \lambda \} = \{ \mu \}.
\]

By [1; Corollary 1.2] and the theorem of Krein-Šmulian (see, [9; Theorem 10.2.1]), we have the following.

Remark 2.5. Suppose that \(\mathcal{E} \) is a separable Banach space and let \(\mathcal{L} \) be a convex subset of \(E^* \) such that the set

\[
\mathcal{L} \cap \{ \lambda \in E^* : \| \lambda \| \leq r \}
\]

is weak*-closed for each \(r > 0 \). Let \(T \in B[\mathcal{E}] \), and let \(\mu \) be a functional in \(\mathcal{L} \) which is \(T \)-invariant. Then \(T \) is \(\mathcal{L} \)-uniquely ergodic with \(\mu \) if and only if \(\mathcal{R}_T \) is an \(\mathcal{L} \)-Korovkin set for \(\mu \).
3. Korovkin sets and mean ergodic theorems in function spaces

In this section, let E be a function space on a non-empty set X. That is, E is a normed linear space of real or complex valued functions on X, which contains the unit function e defined by $e(x) = 1$ for all $x \in X$. Consequently, all the results obtained in the preceding section are applicable to this setting.

From now on, let X be a compact metric space and let $C(X)$ denote the Banach space of all real valued continuous functions on X with the usual supremum norm. Note that $C(X)$ is separable. Let E be a linear subspace containing the unit function e. For a point $x \in X$, we define the point evaluation functional δ_x at x by $\delta_x(f) = f(x)$ for all $f \in E$.

If \mathcal{L} is a subset of E^*, then $\mathcal{F}(\mathcal{L})$ denotes the set of all operators $L \in B[E]$ such that $\delta_x \circ L$ belongs to \mathcal{L} for every $x \in X$. Set

$$\mathcal{L}^1 = \{ \mu \in E^* : \mu(e) = 1 \}$$

and

$$\mathcal{F}^1 = \{ L \in B[E] : L(e) = e \}.$$

Then we have $\mathcal{F}(\mathcal{L}^1) = \mathcal{F}^1$. Let \mathcal{L}_+^1 denote the set of all positive linear functionals on E, and we put $\mathcal{F}_+^1 = \mathcal{F}(\mathcal{L}_+^1)$, which consists of all positive linear operators of E into itself. Furthermore, we set $\mathcal{L}_+^1 = \mathcal{L}_+ \cap \mathcal{L}^1$ and $\mathcal{F}_+^1 = \mathcal{F}(\mathcal{L}_+^1)$, which coincides with $\mathcal{F}_+ \cap \mathcal{F}^1$.

Recall that $\varphi \in \mathcal{L}^1$ and P is the projection operator in \mathcal{F}^1 defined by (2.1).

Theorem 3.1. Let $T \in \mathcal{L}_+^1$. Suppose that $\varphi \in \mathcal{L}_+^1$ and $T^*(\varphi) = \varphi$. Then \mathcal{R}_T is a \mathcal{F}_+^1-Korovkin set for P if and only if T is norm mean stable with P.

Proof. Note that $\{ \sigma_{n,T} \}$ is a bounded sequence in \mathcal{F}_+^1 with $\| \sigma_{n,T} \| = 1$ for all $n = 1, 2, 3, \cdots$. Since $\| T \| = 1$ and P vanishes on \mathcal{R}_T, (2.5) yields that $\lim_{n \to \infty} \| \sigma_{n,T}(g) - P(g) \| = 0$ for all $g \in \mathcal{R}_T$. Therefore, if \mathcal{R}_T is a \mathcal{F}_+^1-Korovkin set for P, then T is norm mean stable with P.

Conversely, suppose that T is norm mean stable with P. Let λ be any functional in \mathcal{L}_+^1 with $T^*(\lambda) = \lambda$. Then we are able to extend λ to a positive linear functional ν on the whole space $C(X)$. By the Riesz representation theorem, there exists a probability measure ρ on X such that

$$\nu(f) = \int_X f(x) \, d\rho(x) \quad \text{for all } f \in C(X).$$

Let g be an arbitrary function in E. Then we have

$$|\sigma_{n,T}(g)(x)| \leq \| \sigma_{n,T} \| \| g \|$$

for all $x \in X$ and for each $n = 1, 2, 3, \cdots$. Therefore, it follows that

$$\varphi(g) = \int_X P(g)(x) \, d\rho(x) = \lim_{n \to \infty} \int_X \sigma_{n,T}(g)(x) \, d\rho(x)$$

$$= \lim_{n \to \infty} \nu(\sigma_{n,T}(g)) = \lim_{n \to \infty} \lambda(\sigma_{n,T}(g)) = \lambda(g).$$

Thus we have $\lambda = \varphi$, and so it follows from [5; Theorems 1.1 and 1.2] that \mathcal{R}_T is a \mathcal{F}_+^1-Korovkin set for P. \qed
Remark 3.2. Let $\alpha = \{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ be a finite set of continuous mappings from X into itself and $F = \{f_1, f_2, \cdots, f_m\}$ a finite subset of E. We define

$$T_{\alpha,F}(f) = \sum_{i=1}^{m} (f \circ \alpha_i) f_i$$

for all $f \in E$. Then $T_{\alpha,F}$ is a bounded linear operator of E into $C(X)$. Assume that $T_{\alpha,F}$ maps E into itself. Then all the results presented in this section are applicable to $T = T_{\alpha,F}$.

Finally, in view of the study of the rate of convergence for approximation processes of positive linear operators, we notice that our forthcoming topic is to give a quantitative version of Theorem 3.1, with an optimal order of approximation (cf. [10], [11], [12], [13], [14]).

References