LINEAR CONNECTIONS AND EXTENDED ELECTRODYNAMICS

STOIL DONEV AND MARIA TASHKOVA

Communicated by Ivaïlo M. Mladenov

Abstract. In this paper we give a presentation of the basic vacuum relations of Extended Electrodynamics in terms of linear connections.

1. Linear Connections

Linear connections are first-order differential operators in vector bundles. If such a connection \(\nabla \) is given and \(\sigma \) is a section of the bundle, then \(\nabla \sigma \) is one-form on the base space valued in the space of sections of the vector bundle, so if \(X \) is a vector field on the base space then \(i(X) \nabla \sigma = \nabla_X \sigma \) is a new section of the same bundle [2]. If \(f \) is a smooth function on the base space then \(\nabla(f \sigma) = df \otimes \sigma + f \nabla \sigma \), which justifies the differential operator nature of \(\nabla \): the components of \(\sigma \) are differentiated and the basis vectors in the bundle space are linearly transformed.

Let \(e_a \) and \(\varepsilon^b, a, b = 1, 2, \ldots, r \) be two dual local bases of the corresponding spaces of sections \(\langle \varepsilon^b, e_a \rangle = \delta_a^b \), then we can write

\[
\sigma = \sigma^a e_a, \quad \nabla = d \otimes id + \Gamma^b_{\mu a} dx^\mu \otimes (\varepsilon^a \otimes e_b), \quad \nabla(e_a) = \Gamma^b_{\mu a} dx^\mu \otimes e_b
\]

and therefore

\[
\nabla(\sigma^m e_m) = d\sigma^m \otimes e_m + \sigma^m \Gamma^b_{\mu a} dx^\mu \langle \varepsilon^a, e_m \rangle \otimes e_b = \left[d\sigma^b + \sigma^a \Gamma^b_{\mu a} dx^\mu \right] \otimes e_b
\]

where \(\Gamma^b_{\mu a} \) are the components of \(\nabla \) with respect to the coordinates \(\{x^\mu\} \) on the base space and with respect to the bases \(\{e_a\} \) and \(\{\varepsilon^b\} \).

Since the elements \((\varepsilon^a \otimes e_b) \) define a basis of the space of (local) linear maps of the local sections, it becomes clear that in order to define locally a linear connection it is sufficient to specify some one-form \(\theta \) on the base space and a