MODULAR FORMS ON BALL QUOTIENTS OF NON-POSITIVE KODAIRA DIMENSION

AZNIV KASPARIAN

Communicated by Vasil V. Tsanov

Abstract. The Baily-Borel compactification \(\mathbb{B}/\Gamma \) of an arithmetic ball quotient admits projective embeddings by \(\Gamma \)-modular forms of sufficiently large weight. We are interested in the target and the rank of the projective map \(\Phi \), determined by \(\Gamma \)-modular forms of weight one. This paper concentrates on the finite \(H \)-Galois quotients \(\mathbb{B}/\Gamma_H \) of a specific \(\mathbb{B}/\Gamma_{(6,8)} \), birational to an abelian surface \(A_{-1} \). Any compactification of \(\mathbb{B}/\Gamma_H \) has non-positive Kodaira dimension. The rational maps \(\Phi^H \) of \(\mathbb{B}/\Gamma_H \) are studied by means of the \(H \)-invariant abelian functions on \(A_{-1} \).

The modular forms of sufficiently large weight are known to provide projective embeddings of the arithmetic quotients of the two-ball

\[
\mathbb{B} = \{ z = (z_1, z_2) \in \mathbb{C}^2 ; |z_1|^2 + |z_2|^2 < 1 \} \cong \text{SU}(2,1)/\text{S}(U_2 \times U_1).
\]

The present work studies the projective maps, given by the modular forms of weight one on certain Baily-Borel compactifications \(\overline{\mathbb{B}}/\Gamma_H \) of Kodaira dimension \(\kappa(\mathbb{B}/\Gamma_H) \leq 0 \). More precisely, we start with a fixed smooth Picard modular surface \(A'_{-1} = \left(\mathbb{B}/\Gamma_{(6,8)} \right)' \) with abelian minimal model \(A_{-1} = E_{-1} \times E_{-1} \), \(E_{-1} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}i \). Any automorphism group of \(A'_{-1} \), preserving the toroidal compactifying divisor \(T' = \left(\mathbb{B}/\Gamma_{(6,8)} \right)' \setminus \left(\mathbb{B}/\Gamma_{(6,8)} \right) \) acts on \(A_{-1} \) and lifts to a ball lattice \(\Gamma_H \), normalizing \(\Gamma_{(6,8)} \). The ball quotient compactification \(A'_{-1}/H = \overline{\mathbb{B}}/\Gamma_H \) is birational to \(A_{-1}/H \). We study the \(\Gamma_H \)-modular forms \(\left[\Gamma_H, 1 \right] \) of weight one by realizing them as \(H \)-invariant of \(\left[\Gamma_{(6,8)}, 1 \right] \). That allows to transfer \(\left[\Gamma_H, 1 \right] \) to the \(H \)-invariant abelian functions, in order to determine \(\dim_{\mathbb{C}}[\Gamma_H, 1] \) and the transcendence dimension of the graded \(\mathbb{C} \)-algebra, generated by \(\left[\Gamma_H, 1 \right] \). The last one is exactly the rank of the projective map \(\Phi : \overline{\mathbb{B}}/\Gamma_H \longrightarrow \mathbb{P}([\Gamma_H, 1]) \).

69