HYPERBOLIC GEOMETRY

ABRAHAM A. UNGAR

Abstract. Relativistic hyperbolic geometry is a model of the hyperbolic geometry of Lobachevsky and Bolyai in which Einstein addition of relativistically admissible velocities plays the role of vector addition. The adaptation of barycentric coordinates for use in relativistic hyperbolic geometry results in the relativistic barycentric coordinates. The latter are covariant with respect to the Lorentz transformation group just as the former are covariant with respect to the Galilei transformation group. Furthermore, the latter give rise to hyperbolically convex sets just as the former give rise to convex sets in Euclidean geometry. Convexity considerations are important in non-relativistic quantum mechanics where mixed states are positive barycentric combinations of pure states and where barycentric coordinates are interpreted as probabilities. In order to set the stage for its application in the geometry of relativistic quantum states, the notion of the relativistic barycentric coordinates that relativistic hyperbolic geometry admits is studied.

Contents
1 Introduction 62
2 Einstein Addition 63
3 Einstein Addition vs Vector Addition 65
4 From Einstein Addition to Gyrogroups 66
5 Einstein Scalar Multiplication 68
6 From Einstein Scalar Multiplication to Gyrovector Spaces 69
7 Gyrolines – The Hyperbolic Lines 70
8 Euclidean and Relativistic-Hyperbolic Barycentric Coordinates 72
9 Example I – The Euclidean Segment 74
10 Example II – The Hyperbolic Segment 75