A DECOUPLED SOLUTION TO THE GENERALIZED EULER DECOMPOSITION PROBLEM IN \mathbb{R}^3 AND $\mathbb{R}^{2,1}$

DANAIL BREZOV, CLEMENTINA MLADENOVA AND IVAÏLO MLADENOV

Presented by Ivaïlo M. Mladenov

Abstract. In this article we suggest a new method, partially based on earlier works of Wohlhart [15], Mladenova and Mladenov [11], Brezov et al [3], that resolves the generalized Euler decomposition problem (about arbitrary axes) using a system of quadratic equations. The main contribution made here is that we manage to decouple this system and express the solutions independently in a compact covariant form. We apply the same technique to the Lorentz group in $2+1$ dimensions and discuss certain complications related to the presence of isotropic directions in $\mathbb{R}^{2,1}$.

Contents

1 Introduction 48
2 Quaternions and Vector-Parameters 48
3 The Decomposition Setting 52
 3.1 Half-Turns ... 53
 3.2 The Case of Two Axes 54
 3.3 Signs and Orientation 55
 3.4 Gimbal Lock ... 55
 3.5 Two Familiar Examples 56
4 The Hyperbolic Case 59
 4.1 Two-Axes Decompositions 60
 4.2 Half-Turns, Time-Reversing Boosts and Locked Gimbals 61
 4.3 Light Cone Singularities 62
 4.4 Configurations of Axes 65
5 Transition to Moving Frames 68
6 Quaternion and split quaternion Decompositions 69
7 Numerical Examples 75
 References ... 77

doi: 10.7546/gsp-33-2014-47-78 47