ANALYSIS OVER C^\ast-ALGEBRAS AND THE OSCILLATORY REPRESENTATION

SVATOPLUK KRÝSL

Communicated by Vasil V. Tsanov

Abstract. Since the last two decades, several differential operators appeared in connection with the so-called oscillatory geometry. These operators act on sections of infinite rank vector bundles. Definitions of the oscillatory representation, metaplectic structure, oscillatory Dirac operator, as well as some necessary fundamental results in the analysis in C^\ast-Hilbert bundles are recalled here. These results are used for a description of the kernel of a certain second order differential operator arising from oscillatory geometry and the cohomology groups of the de Rham complex of exterior forms with values in the oscillatory representation.

Contents

1 Introduction 1

2 Symplectic Linear Algebra and the Oscillatory Representation 4
 2.1 The Segal-Shale-Weil or the Oscillatory Representation 4
 2.2 Quantum Harmonic Oscillator 7

3 Oscillatory Geometry 8
 3.1 Oscillatory Dirac Operator 11

4 Elliptic Operators in Finite Rank Bundles 13

5 Analysis over C^\ast-Algebras 15
 5.1 C^\ast-Algebras and Hilbert C^\ast-Modules 17
 5.2 Complexes of Differential Operators in C^\ast-Hilbert Bundles 19
 5.3 De Rham Complex with Values in the Oscillatory Module 21

References 23
doi: 10.7546/jgsp-33-2014-1-25