Abstract. We analyze several types of soliton solutions to a family of Tzitzeica equations. To this end we use two methods for deriving the soliton solutions: the dressing method and Hirota method. The dressing method allows us to derive two types of soliton solutions. The first type corresponds to a set of six symmetrically situated discrete eigenvalues of the Lax operator L; to each soliton of the second type one relates a set of twelve discrete eigenvalues of L. We also outline how one can construct general N soliton solution containing N_1 solitons of first type and N_2 solitons of second type, $N = N_1 + N_2$. The possible singularities of the solitons and the effects of change of variables that relate the different members of Tzitzeica family equations are briefly discussed. All equations allow quasi-regular as well as singular soliton solutions.

MSC: 35Q51, 35Q53, 37K40

Keywords: Tzitzeica equations, singular soliton solutions, Zakharov-Shabat dressing method, Hirota method

Contents

1 Introduction 2

2 Lorentz (Anti-)Invariance in Two-Dimensions 4
 2.1 Changes of Variables and the Lorentz (Anti-)Invariance 4
 2.2 The Lax Representation of T2 Equation 5

3 The Dressing Method and Dressing Factors for T2 Equation 6
 3.1 One Soliton Solution of First Type 7
 3.2 The Singularity Properties of the Soliton Solutions 11
 3.3 One Soliton Solutions of Second Type 13

4 The Generic N-Soliton Solution for T2 Equation 16

5 Hirota Method for Building One-soliton Solution of T2 Equation 17