ON SOME LIE GROUPS CONTAINING SPIN GROUP IN CLIFFORD ALGEBRA

DMITRY SHIROKOV

Communicated by Abraham Ungar

Abstract. In this paper we consider some Lie groups in complexified Clifford algebras. Using relations between operations of conjugation in Clifford algebras and matrix operations we prove isomorphisms between these groups and classical matrix groups (symplectic, orthogonal, linear, unitary) in the cases of arbitrary dimension and arbitrary signature. Also we obtain isomorphisms of corresponding Lie algebras which are direct sums of subspaces of quaternion types. Spin group is a subgroup of all considered groups and it coincides with one of them in the cases $n \leq 5$. We present classical matrix Lie groups that contain spin group in the case of arbitrary dimension.

MSC: 15A66, 22E60

Keywords: Clifford algebra, Lie algebra, Lie group, spin group

Contents

1 Introduction 74

2 Recurrent Method of Construction of Matrix Representations of Real Clifford Algebras in the Case of Arbitrary Signature 76

3 Relation Between Operations of Conjugation in Clifford Algebra and Matrix Operations 79

4 Additional Signature of Real Clifford Algebra 81

5 Theorems 83

6 Relation Between Group $G^2_{p,q}$ and Spin Group 89

7 Conclusion 90

References 93