GROUP THEORY IN THE PROBLEMS OF MODELING
AND CONTROL OF MULTI-BODY SYSTEMS

CLEMENTINA D. MLADENOVA

Communicated by Jan J. Slawianowski

Abstract. This work is a review of our research activity during the last ten years concerning the problems of modeling and control of multi-body mechanical systems. Because the treatment of the above topics is quite sensitive with respect to the different parameterizations of the rotation group in three dimensional space SO(3) and because the properties of the parameterization more or less influence the efficiency of the dynamic model, here the so called vector-parameter is used for parallel considerations. The consideration of the mechanical system in the configurational space of pure vector-parameters with a group structure opens the possibilities for the Lie group theory to be applied in the problems of the dynamics and control. The sections in this paper present independent parts of an unified scientific approach.

Contents

1. Introduction in Multi–Body Mechanical System 19
2. Rigid Body Kinematics 23
 2.1. Vector Kinematics . 24
 2.2. Quaternions and Quaternion Kinematics 26
 2.3. Spinors and Spinor Kinematics . 28
 2.4. Vector-Parameter Representations of Rotations 33
 2.5. Vector-Parameters for Different SO(3) Parameterizations 35
 2.6. Euclidean Motion . 36
 2.7. Dynamics and Control of a Rigid Body with Vector-Parameters 40
3. Kinematics and Dynamics of a Manipulator System with
 Vector-Parameters 42
 3.1. Basic Kinematical Relations . 42
 3.2. Dynamics in Q_{ct} . 45
4. Screw Considerations 47
 4.1. Screw Kinematics of a Rigid Body . 48
 4.2. Dual Vector-Parameter in Manipulator Kinematics 49
 4.2.1. Manipulator Skeleton and Line Geometry 49
 4.2.2. Dual Orthogonal Matrices and Dual Vector–Parameters 51