We construct, via a complex G–bundle space, a Weil representation for the group $G = SL_*(2, \mathbb{A})$, where (\mathbb{A}, \ast) is a locally profinite ring with involution. The construction is obtained using maximal isotropic lattices and Heisenberg groups.

1. Preliminaries.

Let (\mathbb{A}, \ast) be a locally profinite ring with involution, i.e. a unitary locally compact and totally disconnected ring with an involutive anti-automorphism $a \mapsto a^\ast$, $a \in \mathbb{A}$. Let $Z_s(\mathbb{A})$ be the subring of central symmetric elements of \mathbb{A}.

We define the group $GL_*(2, \mathbb{A})$ of matrices $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{A}$, such that:

1. $ab^\ast = ba^\ast$, $cd^\ast = dc^\ast$
2. $a^\ast c = c^\ast a$, $b^\ast d = d^\ast b$
3. $ad^\ast - bc^\ast = a^\ast d - c^\ast b$ is an invertible central symmetric element of \mathbb{A}, i.e. an element of $Z_s(\mathbb{A})^\times$.

We set $det_\ast (g) = ad^\ast - bc^\ast = a^\ast d - c^\ast b$; then

$$g^{-1} = [det_\ast (g)]^{-1} \begin{pmatrix} d^\ast & -b^\ast \\ -c^\ast & a^\ast \end{pmatrix}$$

We observe that the function $det_\ast : GL_*(2, \mathbb{A}) \rightarrow Z_s(\mathbb{A})^\times$ is an epimorphism so that $G = SL_*(2, \mathbb{A}) = \text{Ker } det_\ast$ is a normal subgroup of $GL_*(2, \mathbb{A})$.

* Both authors have been partially supported by FONDECYT grant 1990029, PICS (CNRS-CONICYT) and Universidad Católica de Valparaíso
In what follows we will assume that $Z_q(A) = F$ is a p-adic field. We denote by O_F the ring of integers of F, P_F is the maximal ideal of O_F, ϖ is a generator of P_F and k_F is the residual field of F which has q elements.

Some such rings are: $A = M_n(F)$, F a p-adic field, with $*$ the transposition; $A = K$ a separable quadratic extension of F, F as above with $*$ the non trivial Galois element; $A = \mathbb{A}^0 \mathbb{V} \oplus \mathbb{A}^1 \mathbb{V} \oplus \mathbb{A}^2 \mathbb{V}$ where V is a two dimensional vector space over a p-adic field F with basis (e_1, e_2) and $*$ is given by the basis transposition (e_1, e_2) to (e_2, e_1).

2. General Setting

Let H be a locally profinite group and Γ a subgroup of $\text{Aut}(H)$. Let (π, V) be an irreducible smooth (complex) representation of H such that $\pi^\gamma \simeq \pi$ ($\pi^\gamma = \pi \circ \gamma$) for every γ in Γ.

If $\gamma \in \Gamma$ then there exists $T_\gamma \in \text{Aut}(C(V))$ such that $T_\gamma \pi(x) = \pi \gamma(x) T_\gamma$ for every $x \in H$.

Set G be the semidirect product of Γ and H. For (γ, h) in G we define $\tilde{\pi}(\gamma, h)$ in $\text{Aut}(C(V))$ by

\[\tilde{\pi}(\gamma, h) = T_\gamma \pi(h). \]

Proposition 2.1. The endomorphism $\tilde{\pi}$, defined above, is a projective extension of π to G.

Proof. We want to prove that $T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta}$ is a scalar.

Since $T_{\gamma} T_{\delta} \pi(x) = T_{\gamma} \pi(\delta(x)) T_{\delta} = \pi(\gamma \delta(x)) T_{\gamma} T_{\delta}$ and $T_{\gamma \delta} \pi(x) = \pi(\gamma \delta(x)) T_{\gamma \delta}$ then

\[T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta} \pi(x) = \pi(x) T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta}. \]

It follows, by Schur’s Lemma, that $T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta} = \sigma(\gamma, \delta) id_V$, for a cocycle σ.

We compute now $\tilde{\pi}(\gamma, h) \tilde{\pi}(\delta, k)$. We have

\[\tilde{\pi}(\gamma, h) \tilde{\pi}(\delta, k) = \sigma(\gamma, \delta) T_{\gamma \delta} \pi(\delta^{-1}(h)) \pi(k). \]

Since $\tilde{\pi}((\gamma, h)(\delta, k)) = \tilde{\pi}(\gamma \delta^{-1}(h) k) = T_{\gamma \delta} \pi(\delta^{-1}(h) k)$ we get

\[\tilde{\pi}(\gamma, h) \tilde{\pi}(\delta, k) = \sigma(\gamma, \delta) \tilde{\pi}((\gamma, h)(\delta, k)). \]

Therefore $\tilde{\pi}$ is a projective representation of G with cocycle σ.

We recall now the definition of compact induction, c-Ind, as we will use it: Let L be a an open subgroup of H, compact modulo the centre of H, and let (ρ, W) be a smooth representation of L. Let V denote the space of compactly supported modulo the centre of H functions $f : H \to W$ with the property $f(lh) = \rho(l)f(h)$, $l \in L, h \in H$. The group acts on this space by right translation of functions; the implied representation is smooth. We will assume now that

$(\pi, V) = c - \text{Ind}^H_L \rho$, where L is an open, compact modulo the centre, subgroup of H and ρ is a one dimensional representation of L.

We assume also that $\rho^\gamma = \rho$ on $L^\gamma \cap L$, where $L^\gamma = \gamma(L)$ and $\rho^\gamma(y) = \rho(\gamma^{-1}(y))$ with $y \in L^\gamma$. We can define, similarly,

\[(\pi^\gamma, V^\gamma) = c - \text{Ind}^H_{L^\gamma} \rho^\gamma. \]

Let S_γ be a non zero intertwining operator from (π, V) to (π^γ, V^γ). So S_γ is an isomorphism between π and π^γ when π (and then π^γ) is irreducible. Then $S_\gamma \pi(x) = \pi^\gamma(x) S_\gamma$.
We define now $I_\gamma : V_{\gamma^{-1}} \rightarrow V$ by $(I_\gamma(f))(x) = f(\gamma^{-1}(x))$. The operator I_γ is well defined and intertwining, in fact, $I_\gamma(f(lx)) = \rho(l)f(x)$ and $I_\gamma \pi_{\gamma^{-1}}(x) = \pi(\gamma(x))I_\gamma$. On the other hand, we have that $I_\gamma S_\gamma : V \rightarrow V$ is an intertwining operator since $I_\gamma S_\gamma \pi(x) = \pi(\gamma(x))I_\gamma S_\gamma$. Let us define $T_\gamma = I_\gamma S_\gamma$. We want to compute the cocycle σ. In order to do this we look first at I_γ on V_{δ}. Since $\gamma^{-1}(h) \in \delta(L)$ implies that $h \in \gamma \delta(L)$, we have $(I_\gamma f)(hx) = f(\gamma^{-1}(h)\gamma^{-1}(x))$.

We can define $I_\sigma : V_{\gamma^{-1}\delta} \rightarrow V_{\delta}$ by $(I_\sigma f)(x) = f(\gamma^{-1}\delta x)$, and $S_{\delta,\gamma} : V_{\gamma^{-1}\delta} \rightarrow V_{\gamma^{-1}\delta}$ by $S_{\delta,\gamma} = I_{\gamma^{-1}\delta}^{-1} S_{\delta} I_{\gamma^{-1}}$ a computation shows that $S_{\delta,\gamma}$ is an intertwining map.

Since the operators $S_{\delta,\gamma} \circ S_\gamma : V \rightarrow V_{\gamma^{-1}\delta^{-1}}$ and $S_{\delta,\gamma} : V \rightarrow V_{\gamma^{-1}\delta^{-1}}$ are both intertwining, the irreducibility of V implies that they differ on a scalar i.e. $S_{\delta,\gamma} \circ S_\gamma = kS_{\delta,\gamma}$.

Lemma 2.2. The intertwining operators defined above satisfy the equation $I_\delta \circ I_{\gamma^{-1}\delta^{-1}} = I_{\delta\gamma}$.
Proof. Straightforward.

We finally show that $k = \sigma(\delta, \gamma)$: Since $S_{\delta,\gamma} \circ S_\gamma = kS_{\delta,\gamma}$ we have $I_{\gamma^{-1}\delta}^{-1} S_{\delta} I_{\gamma^{-1}} S_\gamma = k S_{\delta,\gamma}$. So $S_{\delta} I_{\gamma^{-1}} S_\gamma = k I_{\gamma^{-1}\delta} S_{\delta,\gamma}$ and then $I_\delta S_{\delta} I_{\gamma^{-1}} S_\gamma = k I_\delta I_{\gamma^{-1}} S_{\delta,\gamma}$. Using Lemma 2.2 we get $I_\delta S_{\delta} I_{\gamma^{-1}} S_\gamma = k I_{\delta,\gamma} S_{\delta,\gamma}$ i.e. $T_{\delta} T_\gamma = k T_{\delta,\gamma}$.

3. Heisenberg Construction

Given a finite vector space W we can define $H = F \oplus W$ which has a structure of group with respect to

$$(a, w) \cdot (a', w') = (a + a' + B(w, w'), w + w')$$

where $B : W \times W \rightarrow F$ is a non-degenerate alternating form.

If M is any subgroup of W we write $M = F \oplus M$, which is a subgroup of H.

Definition 3.1. Let M be an any subset of W. We define $M^* = \{w \in W \mid B(m, w) \in O_F \forall m \in M\}$ and $M^\perp = \{w \in W \mid B(m, w) = 0 \forall m \in M\}$.

Observation 3.2.

a) If M is a F--subspace of W, then $M^* = M^\perp$. In fact, the inclusion $M^\perp \subset M^*$ is obvious. On the other hand, since $\alpha B(m, w) = B(\alpha m, w)$ we have that $w \in M^*$ implies that $\alpha B(m, w) \in O_F \forall m \in M \forall \alpha \in F$, so $B(m, w) = 0$.

b) Another fact that we will use later, is the following

$$[(a, w), (a', w')] = (2B(w, w'), 0).$$

Let \mathcal{L} be a maximal isotropic lattice i.e. \mathcal{L} is compact and open and $\mathcal{L}^* = \mathcal{L}$. Set $\tilde{\mathcal{L}} = F \oplus \mathcal{L}$ and let ψ be a character of F of conductor O_F. Define $\psi_{\tilde{\mathcal{L}}}$ on $\tilde{\mathcal{L}}$ by $\psi_{\tilde{\mathcal{L}}}(a, l) = \psi(a)$ for $a \in F$.

Proposition 3.3. With the above notation and assuming that $2 \in O_F^*$ we have:

a) $\psi_{\tilde{\mathcal{L}}}$ is a character of $\tilde{\mathcal{L}}$.

b) If we define $\text{Int}_H(\psi_{\tilde{\mathcal{L}}}) = \{h \in H \mid \text{Hom}_{\tilde{\mathcal{L}} \oplus \tilde{\mathcal{L}}} (\psi_{\tilde{\mathcal{L}}}, \psi_{\tilde{\mathcal{L}}}^h) \neq 0\}$, where $\tilde{\mathcal{L}}^h = h\tilde{\mathcal{L}}h^{-1}$
and $\psi^h(x) = \psi_\mathcal{E}(h^{-1}xh)$ for any $x \in \bar{\mathcal{E}}^h$, then $\text{Int}_H(\psi_\mathcal{E})$ is equal to $\bar{\mathcal{E}}$.

Proof.

a) $\psi_\mathcal{E}(a, w)(a', w') = \psi_\mathcal{E}(a + a' + B(w, w'), w + w')$, since \mathcal{E} is a maximal isotropic lattice, $B(w, w') \in O_F$. Then $\psi_\mathcal{E}(a, w)(a', w') = \psi(a)\psi(a') = \psi_\mathcal{E}(a, w)\psi_\mathcal{E}(a', w')$.

b) If $(a, w) \in H$ Since $(-a, -w)(\alpha, y)(a, w) = (\alpha + 2B(y, w), y)$ and $\bar{\mathcal{E}} \triangleleft H$, we have $\psi^{(a, w)}_\mathcal{E} = \psi_\mathcal{E}$ on $\mathcal{E} \cap (-a, -w)\mathcal{E}(a, w) = \bar{\mathcal{E}}$ if and only if $2B(y, w) \in O_F$ for all $y \in \mathcal{E}$ and only if $B(y, w) \in O_F$ for all $y \in \mathcal{E}$ (given that $2 \in O_F$) and this is the case if and only if $w \in \mathcal{E}$.

Now let $\Pi_\mathcal{E} = c - \text{Ind}^H_\mathcal{E} \psi_\mathcal{E}$ be the compact induction of the character $\psi_\mathcal{E}$ from $\bar{\mathcal{E}}$ to H as defined in Section 2.

Proposition 3.4. The representation $\Pi_\mathcal{E}$ defined above is an irreducible admissible supercuspidal representation of H.

Proof. The representation $\Pi_\mathcal{E}$ is the Heisenberg representation realized in the lattice model (see [5], Chapter 2). Stone-von Neumann theorem implies that $\Pi_\mathcal{E}$ is a smooth irreducible (thus admissible) representation. Then, using theorem 1 of [2], we get that it is supercuspidal.

Now let Γ be the subgroup of $\text{Aut}(H)$ of all automorphism $\gamma : H \rightarrow H$ such that $\gamma_F = id_F$ and γ_W is a symplectic linear automorphism. The subgroup Γ acts transitively over the set Θ of all maximal isotropic lattices in W, by $\mathcal{E}^\gamma = \gamma(\mathcal{E})$ ($\gamma \in \Gamma$ and $\mathcal{E} \in \Theta$). Furthermore $\psi^\gamma_\mathcal{E} = \psi_\mathcal{E}$ on $\mathcal{E} \cap \mathcal{E}$ where $\psi^\gamma_\mathcal{E}(y) = \psi_\mathcal{E}(\gamma^{-1}(y))$, $\forall y \in \mathcal{E}^\gamma$.

On the other hand, by Proposition 3.4, $(\Pi_\mathcal{E}, V_\mathcal{E}) = c - \text{Ind}^H_\mathcal{E} \psi_\mathcal{E}$ is an irreducible admissible supercuspidal representation of H, where $V_\mathcal{E} = \{ f : H \rightarrow \mathbb{C} | f(lx) = \psi_\mathcal{E}(l)f(x), \forall l \in \mathcal{E}, \forall x \in H, f \text{ compactly supported modulo the centre of } H \}$. So, we can define $(\Pi_\mathcal{E}^\gamma, V_\mathcal{E}^\gamma) = c - \text{Ind}^H_\mathcal{E} \psi_\mathcal{E}^\gamma$, where $V_\mathcal{E}^\gamma = \{ f : H \rightarrow \mathbb{C} | f(lx) = \psi_\mathcal{E}^\gamma(l)f(x), \forall l \in \mathcal{E}^\gamma \}$ and now the general set-up of Section 2 applies.

Define the function $\tau_\gamma : H \rightarrow \mathbb{C}$ by

$$
\tau_\gamma(xy) = \begin{cases}
\psi_\mathcal{E}(x)\psi_\mathcal{E}(y) & \text{if } x \in \mathcal{E}, y \in \mathcal{E} \\
0 & \text{otherwise}
\end{cases}
$$

Note that τ_γ is well defined since $\psi_\mathcal{E} = \psi_\mathcal{E}$ on $\mathcal{E} \cap \mathcal{E}$. For any f in the space of $\Pi_\mathcal{E}$ we can define $\Upsilon_\gamma(f) : H \rightarrow \mathbb{C}$ by

$$
\Upsilon_\gamma(f)(x) = \int_{H/F} \tau_\gamma(y)f(y^{-1}x)dy
$$

for an appropriate Haar measure on $W = H/F$. We can observe that $\Upsilon_\gamma : V_\mathcal{E} \rightarrow V_{\mathcal{E}^{-1}}$ is a non-zero intertwining operator and since $\Pi_\mathcal{E}$ is irreducible (and also $\Pi_{\mathcal{E}^{-1}}$), we have that Υ_γ is an isomorphism.

We define now $I_\gamma : V_{\mathcal{E}^{-1}} \rightarrow V_\mathcal{E}$ by $(I_\gamma f)(x) = f(\gamma^{-1}(x))$ and so we have, as in section 2, that $T_\gamma = I_\gamma \Upsilon_\gamma$ is an intertwining of $V_\mathcal{E}$ which verify

$$
T_\delta \circ T_\gamma = \sigma(\delta, \gamma)T_\delta.
$$
4. Lagrangians

Let S be a left A-module whose F-dimension is n. We note that S is a right A-module with $sa = a^*s$, $a \in A$, $s \in S$.

Let $b : S \times S \rightarrow F$ be a non degenerate bilinear symmetric form such that

$$b(x_1a, x_2) = b(x_1, ax_2) \quad (a \in A; x_1, x_2 \in S).$$

We set now $W = S \oplus S$ and define $B : W \times W \rightarrow F$ by $B(x, y) = b(x_1, y_2) - b(y_1, x_2)$ for $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in W. Observe that B is a non degenerate alternating form and we can define $M^\perp = \{w \in W \mid B(w, m) = 0, \forall m \in M\}$ for any O_F-submodule M of W. The following properties are straightforward.

1. If either M is an F-subspace or if M is a compact open O_F-submodule of W (an O_F-lattice in W) then $(M^\perp)^\perp = M$.
2. If M, N are any O_F-submodules which satisfy $(M^\perp)^\perp = M$ and $(N^\perp)^\perp = N$ then $(M \cap N)^\perp = M^\perp + N^\perp$.

We call an O_F-submodule M of W isotropic if M is an O_F-submodule of M^\perp. We say that M is maximal isotropic if $M = M^\perp$.

Fixing an additive (continuous) character ψ of F of conductor O_F, we can define the function $\chi : W \times W \rightarrow \mathbf{T}$, where \mathbf{T} is the group of complex numbers of module one, by

$$\chi(x, y) = (\psi \circ B)(x, y) \quad ((x, y) \in W \times W).$$

which is a symplectic bicharacter.

Definition 4.1. Let M be a subset of W. The orthogonal component M^* of M is the set of $y \in W$ such that $\chi(x, y) = 1$, for every $x \in M$.

Observation 4.2. In the case where M is a F-subspace of W we have that M^* is also a F-subspace of W and $M^\perp = M^*$.

Definition 4.3. Let L be a F-subspace of W such that $L^\perp = L$. L is called a Lagrangian subspace of W.

Observation 4.4. If M is an F-subspace of W then M is maximal isotropic if and only if M is Lagrangian.

Lemma 4.5. Let W and χ be as above. Let L and L' be two Lagrangian subspaces of W. Then there exists a symplectic basis $\{w_1, w_2, \ldots, w_n, w'_1, w'_2, \ldots, w'_n\}$ of W, i.e.

1. $\chi(w_j, w'_j) \neq 1$, $j = 1, \ldots, n$
2. $\chi(w_i, w_j) = \chi(w'_i, w'_j) = 1$ for every i, j.
3. $\chi(w_i, w'_j) = 1$ for every $i \neq j$.
such that:
\[
L = Fw_1 + Fw_2 + \cdots + Fw_k + Fw_{k+1} + \cdots + Fw_n
\]
\[
L' = Fw_1' + Fw_2' + \cdots + Fw_k' + Fw_{k+1} + \cdots + Fw_n
\]

Proof. See Lemma 1.4.6. in [4]. □

Corollary 4.6. Given a Lagrangian \(L \), there exists a Lagrangian \(L' \) such that \(W = L \oplus L' \).

Proof. If \(L = \langle w_1, w_2, \ldots, w_n \rangle \), then \(L \) is a proper subspace of \(\langle w_2, \ldots, w_n \rangle \). We consider an element \(v_1 \in \langle w_2, \ldots, w_n \rangle - L \). Then \(\chi(w_1, v_1) \neq 1 \). Now we can pick an element \(v_2 \in \langle w_1, w_3, w_4, \ldots, w_n, v_1 \rangle - \langle w_1, w_2, w_3, \ldots, w_n, v_1 \rangle \), and so \(\chi(w_2, v_2) \neq 1 \). By induction we have \(\{w_1, v_1\}, \{w_2, v_2\}, \ldots, \{w_n, v_n\} \) such that \(\chi(w_i, v_i) \neq 1 \), \(i = 1, \ldots, n \); \(\chi(w_i, w_j) = \chi(v_i, v_j) = 1 \) for every \(i, j \) and \(\chi(w_i, v_j) = 1 \) for every \(i \neq j \). Hence \(L' = \langle v_1, v_2, \ldots, v_n \rangle \) is such that \(W = L \oplus L' \). □

Corollary 4.7. There exists a maximal isotropic \(O_F \)-lattice \(\mathfrak{L} \) in \(W \).

Let \(L \) be a Lagrangian in \(W \) and define \(\psi_L \) on \(\tilde{L} = F \oplus L \) as above. Let \(\Pi_L = c - \text{Ind}_L^H \psi_L \) and consider the group \(H = F \oplus W \). Let \(\tilde{\mathfrak{L}} = F \oplus \mathfrak{L} \), \(\mathfrak{L} \) a maximal isotropic \(O_F \)-lattice in \(W \).

Now we can define the function \(\rho : H \to C \) by
\[
\rho(z) = \begin{cases}
\psi_L(x)\psi_L(y) & \text{if } z = x \cdot y, \ x \in \tilde{L}, \ y \in \tilde{\mathfrak{L}} \\
0 & \text{if } z \notin \tilde{L} \oplus (L + \mathfrak{L})
\end{cases}
\]

Note that \(\rho \) is well defined since \(\psi_L = \psi_L \) on \(\tilde{L} \cap \tilde{\mathfrak{L}} \) and \(\tilde{L} \cap \tilde{\mathfrak{L}} = F \oplus (L \cap \mathfrak{L}) \).

For any \(f \) in the space of \(\Pi_L \) we can define \(S(f) : H \to C \) by
\[
S(f)(x) = \int_{H/F} \rho(y)f(y^{-1}x)dy.
\]

Given an \(O_F \)-lattice \(\mathfrak{M} \) submodule of \(\mathfrak{L} \), we define the function
\[
\rho_{\mathfrak{M}}(z) = \begin{cases}
\psi_L(x)\psi_L(y) & \text{if } z = x \cdot y, \ x \in \tilde{L}, \ y \in \tilde{\mathfrak{M}} \\
0 & \text{if } z \notin \tilde{L} \oplus \mathfrak{M} \oplus (L + \mathfrak{M})
\end{cases}
\]

Proposition 4.8. The map \(S \) defined above is an \(H \)-isomorphism from \(\Pi_L \) to \(\Pi_L \)

Proof. Let \(f_0 \) be the function, in the space of \(\Pi_L \), defined by
\[
f_0(z) = \begin{cases}
\psi_L(z) & \text{if } z \in \tilde{\mathfrak{L}} \\
0 & \text{otherwise}
\end{cases}
\]
and
\[
f_M(z) = \begin{cases}
\psi_M(z) & \text{if } z \in \tilde{M} \\
0 & \text{otherwise}
\end{cases}
\]

A computation shows \(S(f_0) = \rho \) and \(S(f_M) = \rho_M \).

Since \(S \) is different from 0 and \(\Pi_L \) is irreducible, \(S \) is injective.

We will prove now that \(S \) is onto. To this end we prove that the space of \(\Pi_L \) is equal to \(\langle \{ \rho_M \mid M \subset L \} \rangle \). First, \(S(f_M) = \rho_M \) so \(\langle \{ \rho_M \mid M \subset L \} \rangle \subset \Pi_L \).

On the other hand any \(f \) in \(\Pi_L \) has support compact modulo \(\tilde{L} \) and it is locally constant. From this, it can be seen that any function \(f \) is a linear combination of \(\rho_M \) for different lattices \(M \subset L \). Hence we can conclude that \(S \) is an isomorphism.

Define now \(T : \Pi_L \longrightarrow \Pi_L \) by
\[
T(f)(x) = \int_{H/F} \theta(y)f(y^{-1}x)dy
\]
where \(\theta \) is given by
\[
\theta(z) = \begin{cases}
\psi_L(x)\psi_L(y) & \text{if } z = x \cdot y, \ x \in \mathcal{L}, y \in L \\
0 & \text{if } z \notin \mathcal{L}L
\end{cases}
\]
We have that \(T \neq 0 \) and by Schur’s Lemma [1] [3], \(TS = cI \), so \(TS(f_0) = cf_0 \) which implies \(c = 1 \), and finally
\[
TS = I_{\Pi_L}
\]

5. Connections over \(SL_*(2,A) \).

The group \(G = SL_*(2,A) \) acts naturally by matrix multiplication on \(W \) by fixing the bicharacter \(\chi \),
\[
\chi(gx,gy) = \chi(x,y) \quad (x,y \in W)
\]

We define a complex \(G \)-bundle space \(\mathfrak{F} = (\mathcal{E}, p, \Gamma, \tau) \) by:

1. \(\Gamma = \{ L \mid L \text{ a Lagrangian of } W \} \)

2. Fix a Haar measure \(dw \) on \(W \) and \(dw_L \) on a Lagrangian \(L \) such that \(d\overline{w_L} \) is the unique Haar measure on \(W/L \) which verifies that \(dw = d\overline{w_L}dw_L \).

For each Lagrangian \(L \) we consider the set \(\mathcal{E}_L \) of all functions \(f : W \longrightarrow \mathbb{C} \) which are locally constant, compactly supported modulo \(L \), and such that \(f(w + l) = \chi(w,l)f(w) \) for every \(w \in W \) and \(l \in L \).

We set
\[
\mathcal{E} = \bigcup_{L \in b} \mathcal{E}_L
\]
and we define an inner product on each \(\mathcal{E}_L \) by
\[
\langle f, h \rangle = \int_{W/L} f(w)\overline{h(w)}dw_L \quad (f, h \in \mathcal{E}_L)
\]
3. Let \(p : \mathcal{E} \longrightarrow \Gamma \) be the canonical projection which sends each \(f \) of \(\mathcal{E}_L \) to \(L \).

4. The group \(G \) acts on \(\mathcal{E} \) and \(\Gamma \) by

\[
[\tau_g(f)](w) = f(g^{-1}w) \quad (f \in \mathcal{E}, \ g \in G, \ w \in W)
\]

and by

\[
\tau_g(L) = gL \quad (L \in \mathfrak{b}, \ g \in G)
\]

respectively.

Lemma 5.1. Let \(L \) be a Lagrangian subspace of \(W \). Let \(M \) be an \(O_F \)-lattice of \(W \). We set

\[
g_M(w) = \begin{cases}
\chi(x,c) & \text{if } w = x + c \in L + M \\
0 & \text{otherwise.}
\end{cases}
\]

Then, the set \(\{g_M \mid M \text{ be an } O_F \text{-lattice of } L\} \) span \(\mathcal{E}_L \) as a \(\mathbb{C} \)-vector space.

Proof. For each \(f \) in \(\mathcal{E}_L \) we can pick an \(O_F \)-lattice \(M \) such that \(\text{Supp}(f) = L + M \). We use that \(f \) is locally constant and \(M \) is compact, to write \(f \) as linear combination of \(g_M \)'s as above.

Let \(L \) and \(L' \) be Lagrangians included in a fixed maximal \(O_F \)-lattice \(\mathcal{L} \) in \(W \). As we have seen, there are two isomorphisms, namely \(S_L : \Pi_L \longrightarrow \Pi_L \) and \(S_{L'} : \Pi_L \longrightarrow \Pi_L' \) with \(T_L : \Pi_L \longrightarrow \Pi_L \) and \(T_{L'} : \Pi_L' \longrightarrow \Pi_L \) as the respective inverses.

We now define isomorphisms \(\tilde{\gamma}_{L',L} : \Pi_L \longrightarrow \Pi_{L'} \), by

\[
\tilde{\gamma}_{L',L} = S_{L'} \circ T_L
\]

Let \(\Lambda^L : \Pi_L \longrightarrow \mathcal{E}_L \) be defined by \(\Lambda^L(f)(w) = f(0, w) \), for \(f \in \Pi_L \) and \(w \in W \), and let, \(\Omega^L : \mathcal{E}_L \longrightarrow \Pi_L \) be defined by \(\Omega^L(f)(a, w) = \psi(a)f(w) \), for \(f \in \mathcal{E}_L \) and \((a, w) \in \tilde{L} \). A computation shows that \(\Lambda^L \) and \(\Omega^L \) are inverse to each other and both are intertwining operators.

We can define now isomorphisms (which we will call connections) \(\gamma_{L,L'} : \mathcal{E}_L \longrightarrow \mathcal{E}_{L'} \) by \(\gamma_{L,L'} = \Lambda^L' \circ \tilde{\gamma}_{L,L'} \circ \Omega^L \).

Then the diagram

\[
\begin{array}{ccc}
\Pi_L & \longrightarrow & \Pi_{L'} \\
\Omega^L \uparrow & & \downarrow \Lambda^L' \\
\mathcal{E}_L & \longrightarrow & \mathcal{E}_{L'}
\end{array}
\]

is commutative.

We obtain

Theorem 5.2. The set \(\Gamma = \{\gamma_{L',L} \mid L', L \in \mathfrak{b}\} \) is a family of \(G \)-equivariant connections over the fiber bundle \(\mathfrak{F} \) which verifies, for \(L, L', L'' \in \mathfrak{b}; \ f, f' \in \mathcal{E}_L; \ h \in \mathcal{E}_{L'}; \ g \in G \) the following properties:

1. \(\gamma_{L,L'} \circ \gamma_{L',L} = \gamma_{L,L} = id_{\mathcal{E}_L} \)
1. $\langle \gamma_{L',L}(f), h \rangle = \langle f, \gamma_{L,L}(h) \rangle$

2. $\langle \gamma_{L',L}(f), \gamma_{L',L}(f') \rangle = \langle f, f' \rangle$

3. $\gamma_{L,L''} \circ \gamma_{L',L'} \circ \gamma_{L',L} = S_W(L; L', L'') \text{id}_E$

4. where $S_W(L; L', L'')$ is a constant.

5. $\tau_g \circ \gamma_{L',L} = \gamma_{gL',gL} \circ \tau_g$

Note that $S_W(L; L', L'')$ is the analogous of the Maslov index in [4] and this theorem is comparable with theorem 1.4 in [6].

References

