A monogenic Hasse-Arf theorem

par JAMES BORGER

RÉSUMÉ. On étend le théorème de Hasse–Arf de la classe des extensions résiduellement séparables des anneaux de valuation discrète complets à la classe des extensions monogènes.

Abstract. I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.

Let \(B/A \) be a finite extension of henselian discrete valuation rings which is generically Galois with group \(G \), that is, for which the corresponding extension of fraction fields is Galois with group \(G \). For \(\sigma \in G - \{1\} \), let \(I_B(\sigma) \) be the ideal of \(B \) generated by \((\sigma - 1)B\) and let \(i_B(\sigma) \) be the length of the \(B \)-module \(B/I_B(\sigma) \).

For any finite dimensional complex representation \(\rho : G \to \text{Aut}_C(V) \), we define the naive Artin conductor exactly as we do when \(B/A \) is residually separable, i.e., when the extension of residue fields is separable:

\[
\text{ar}_n(\rho) = e_{B/A}^{-1} \sum_{\sigma \neq 1} [\dim(V) - \text{trace}(\rho(\sigma))]i_B(\sigma).
\]

By looking at real parts, it is immediate that this is a non-negative rational number, and when \(B/A \) is residually separable, the Hasse-Arf theorem [3, VI §2] tells us that it is also an integer.

In [4], De Smit shows that most of the classical ramification-theoretic properties of residually separable extensions \(B/A \) hold in the slightly more general, “monogenic” case where we require only that \(B \) is generated as an \(A \)-algebra by one element. The purpose of this note is to show that the Hasse–Arf theorem also holds in this context.

Partial results in this direction were obtained by Spriano [5]. A proof of the Hasse-Arf theorem in equal characteristic that is strong enough to cover monogenic extensions was outlined at the 1999 Luminy conference on ramification theory. It was based on a technical analysis of a refinement [2, 3.2.2] of Kato’s refined Swan conductor [1], but since then, an elementary reduction to the classical Hasse-Arf theorem has been found.

The contents of this paper are contained in my dissertation (U.C. Berkeley, 2000), which was written under the direction of Hendrik Lenstra.
Proposition 1. Let B/A be a finite generically separable extension of henselian discrete valuation rings. Then the following are equivalent.

(i) There exists an $x \in B$ such that $B = A[x]$.

(ii) The second exterior power $\Omega^2_{B/A}$ of the module of relative Kähler differentials is zero.

(iii) There is a henselian discrete valuation ring A' that is finite over the maximal unramified subextension A^{ur} of B/A such that $e_{A'/A^{ur}} = 1$ and B'/A' is a residually separable extension of discrete valuation rings, where $B' = A' \otimes_{A^{ur}} B$.

Proof. De Smit [4, 4.2] shows that (i) follows from (ii). For any A' as in (iii), we have $B' \otimes_B \Omega^2_{B/A} \cong B' \otimes_B \Omega^2_{B/A^{ur}} \cong \Omega^2_{B'/A'} = 0$, so (iii) implies (ii). Now we show (i) implies (iii).

Assume, as we may, that $A = A^{ur}$, and let l/k denote the residue extension of B/A. Take some $x \in B$ such that $B = A[x]$ and let \bar{x} denote the image of x in l. Let $g(X) \in A[X]$ be a monic lift of the minimal polynomial $X^n - a$ of \bar{x} over k. Since the maximal ideal of B is generated by that of A and $g(x)$, we may assume that $g(x)$ generates the maximal ideal of B. Then modulo the maximal ideal of B, we have $g(X + x) \equiv X^n + x^n - a \equiv X^n$, so $g(X + x)$ is an Eisenstein polynomial with coefficients in B. Now let A' be the discrete valuation ring $A[X]/(g(X))$. Then

$$B' = A' \otimes_A B \cong B[X]/(g(X)) \cong B[X]/(g(X + x))$$

is a discrete valuation ring which has the same residue field as B and, hence, A'.

\[\square\]

Proposition 2. Let B/A be a finite extension of henselian discrete valuation rings that is generically Galois with group G, and let $\rho : G \to \text{Aut}_{C(V)}$ be a finite dimensional representation of G. If A'/A is a finite extension of henselian discrete valuation rings such that $B' = A' \otimes_A B$ is a discrete valuation ring, then we have $\ar_n(\rho') = e_{A'/A} \ar_n(\rho)$, where ρ' is ρ viewed as a representation of the generic Galois group of the extension B'/A'.

Proof. For $\sigma \in G - \{1\}$, we have $I_{B'}(\sigma) = A' \otimes_A I_B(\sigma) = B' \otimes_B I_B(\sigma)$, so

$$i_{B'}(\sigma) = \text{length}_{B'}(B'/I_{B'}(\sigma)) = \text{length}_{B'}(B' \otimes_B B/I_B(\sigma)) = e_{B'/B} \text{length}_{B}(B/I_B(\sigma)) = e_{B'/B} \text{length}_{B}(I_{B'}(\sigma)).$$

Thus

$$\ar_n(\rho') = e_{B'/B} \ar_n(\rho') = e_{A'/A} \ar_n(\rho).$$

\[\square\]
Corollary 3. Let B/A be a finite monogenic extension of henselian discrete valuation rings that is generically Galois with group G, and let $\rho : G \to \text{Aut}_C(V)$ be a finite dimensional representation of G. Then $\text{ar}_n(\rho)$ is an integer.

Proof. Restricting to the maximal unramified subextension of B/A does not change the naive Artin conductor or the monogeneity of the extension. So assume B/A is residually purely inseparable. Now just apply the previous proposition with A' taken as in the first proposition and then use the classical Hasse-Arf theorem. \square

Remark. One can define a naive Swan conductor [1, 6.7] as well. It also is an integer in the monogenic case but simply because it agrees with the naive Artin conductor whenever B/A is monogenic and not residually separable. It is not, however, a good invariant even in the monogenic case: it is a consequence of results outlined at the Luminy conference that in the (monogenic) equal-characteristic case, the naive Swan conductor of a faithful, one-dimensional representation agrees with Kato’s Swan conductor if and only if either B/A is residually separable or $e_{B/A} = 1$, whereas for general monogenic extensions in equal-characteristic, the naive Artin conductor of a one-dimensional representation is equal to a non-logarithmic, “Artin-type” variant of Kato’s Swan conductor.

References

James Borger
The University of Chicago
Department of Mathematics
5734 University Avenue
Chicago, Illinois 60637-1546, USA
E-mail: borger@math.uchicago.edu