Sharper ABC-based bounds for congruent polynomials

par Daniel J. BERNSTEIN

Abstract. Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomial h. Voloch pointed out an application of the Stothers-Mason ABC theorem in this context: under mild assumptions, distinct polynomials A, B, C of degree at most $1.2 \deg h - 0.2 \deg \rad ABC$ cannot all be congruent modulo h. This paper presents two improvements in the combinatorial part of Voloch’s argument. The first improvement moves the degree bound up to $2 \deg h - \deg \rad ABC$. The second improvement generalizes to $m \geq 3$ polynomials A_1, \ldots, A_m of degree at most $((3m - 5)/(3m - 7)) \deg h - (6/(3m - 7)m) \deg \rad A_1 \cdots A_m$.

Manuscrit reçu le 3 octobre 2003.
The author was supported by the National Science Foundation under grant DMS-0140542, and by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research Institute and the University of California at Berkeley. Permanent ID of this document: 1d9e079cee20138de8e119a99044baa3.
1. Introduction

Fix a nonconstant univariate polynomial h over a field k. Assume that the characteristic of k is at least $3 \deg h - 1$. The main theorem of this paper, Theorem 2.3, states that if $m \geq 3$ distinct polynomials A_1, \ldots, A_m are all congruent modulo h and coprime to h then

$$\max\{\deg A_1, \ldots, \deg A_m\} > \frac{3m - 5}{3m - 7} \deg h - \frac{6}{(3m - 7)m} \deg \rad A_1 \cdots A_m.$$

As usual, $\rad X$ means the largest monic squarefree divisor of X, i.e., the product of the monic irreducibles dividing X. If $\deg \rad A_1 \cdots A_m < (m/3) \deg h$ then the bound in Theorem 2.3 is better than the obvious bound $\max\{\deg A_1, \ldots, \deg A_m\} > \deg h - 1$.

For example, if distinct polynomials A, B, C are congruent modulo h and coprime to h then $\max\{\deg A, \deg B, \deg C\} > 2 \deg h - \deg \rad ABC$. No better bound is possible in this level of generality: if $h = x^{10} - 1, A = x^{20}, B = x^{10},$ and $C = 1$ then $\rad ABC = \rad x^{30} = x$ so $2 \deg h - \deg \rad ABC = 19$.

The proof relies on the Stothers-Mason ABC theorem. Analogous bounds in the number-field case follow from the ABC conjecture.

Previous work. Voloch in [3] proved that $\max\{\deg A, \deg B, \deg C\} > 1.2 \deg h - 0.2 \deg \rad ABC$. This paper improves Voloch’s result in two ways:

- This paper is quantitatively stronger, in the interesting case that $\deg \rad ABC < \deg h$.
- This paper applies to larger values of m.

Application. Inside the unit group $\left(k[x]/h \right)^*$ consider the subgroup G generated by $\{x - s : s \in S\}$, where $S \subseteq k$ and $0 \notin h(S)$. The Agrawal-Kayal-Saxena primality-proving method requires a lower bound on $\#G$ for groups G of this type, typically with $\#S = \deg h$. The primality-proving method becomes faster as the lower bound on $\#G$ increases, as discussed in [1, Section 7].

This paper shows that

$$\#G \geq \frac{1}{m - 1} \left(\frac{\left((3m - 5)/(3m - 7) \right) \deg h - (6/(3m - 7)m) \#S + \#S}{\#S} \right)$$

for any $m \geq 3$. Indeed, the binomial coefficient is the number of products of powers of $\{x - s\}$ in $k[x]$ of degree at most $\left((3m - 5)/(3m - 7) \right) \deg h - (6/(3m - 7)m) \#S$; m distinct such products cannot all have the same image modulo h.
In particular, if \(\#S = \deg h \), then \(\#G \geq \frac{1}{4} \left(\frac{[2, 1, \deg h]}{\deg h} \right) \approx 4.27689^{\deg h} \). Compare this to the bound \(\#G \geq \left(\frac{2^{\deg h - 1}}{\deg h} \right) \approx 4^{\deg h} \) obtained from a degree bound of \(\deg h - 1 \). Note that the improvement requires \(m > 3 \).

Different methods from [3] produce a lower bound around \(5.828^{\deg h} \), so the ABC-based techniques in [3] and in this paper have not yet had an impact on the speed of primality proving. However, I suspect that these techniques have not yet reached their limits.

2. Proofs

Theorem 2.1. Let \(k \) be a field. Let \(h \) be a positive-degree element of the polynomial ring \(k[x] \). Assume that \(1, 2, 3, \ldots, 3\deg h - 2 \) are invertible in \(k \). Let \(A, B, C \) be distinct nonzero elements of \(k[x] \). If \(\gcd\{A, B, C\} = 1 \) and \(A \equiv B \equiv C \pmod{h} \) then \(\max\{\deg A, \deg B, \deg C\} > 2\deg h - \deg \rad A B C \).

Proof. Permute \(A, B, C \) so that \(\deg A = \max\{\deg A, \deg B, \deg C\} \).

The nonzero polynomial \(A - B \) is a multiple of \(h \), so \(\deg A \geq \deg(A - B) \geq \deg h > 0 \); thus \(\deg \rad A B C > 0 \).

If \(\deg A \geq 2\deg h \) then \(\deg A > 2\deg h - \deg \rad A B C \); done.

Define \(U = (B - C)/h, \ V = (C - A)/h, \) and \(W = (A - B)/h. \) Then \(U \neq 0; \ V \neq 0; \ W \neq 0; \ U, V, W \) each have degree at most \(\deg A - \deg h \); and \(U A + V B + W C = 0 \). Define \(D = \gcd\{U A, V B, W C\} \).

If \(\deg D = \deg U A \) then \(U A \) divides \(V B, W C ; \) so \(A \) divides \(V W A, V W B, W V C; \) so \(A \) divides \(\gcd\{V W A, V W B, W V C\} = V W ; \) but \(V W \neq 0 \), so \(\deg A \leq \deg V W \leq 2(\deg A - \deg h); \) so \(\deg A > 2\deg h \); done.

Assume from now on that \(\deg D < \deg U A \) and that \(\deg A \leq 2\deg h - 1 \). Then \(\deg(U A/D) \) is between 1 and \(2\deg A - \deg h \leq 3\deg h - 2 \); so the derivative of \(U A/D \) is nonzero. Also \(U A/D + V B/D + W C/D = 0 \), and \(\gcd\{U A/D, V B/D, W C/D\} = 1 \). By Theorem 3.1 below, \(\deg(U A/D) < \deg \rad((U A/D)(V B/D)(W C/D)) = \deg \rad(U V W A B C/D^3) \).

The proof follows Voloch up to this point. Voloch next observes that \(D \) divides \(\gcd\{U V W A, U V W B, U V W C\} = U V W \gcd\{A, B, C\} = U V W. \) I claim that more is true: \(D \rad(U V W A B C/D^3) \) divides \(U V W \rad A B C \).

(\text{In other words: If } d = \min\{a + b, v + b, w + c\} \text{ and } \min\{a, b, c\} = 0 \text{ then } d + [u + v + w + a + b + c > 3d] \leq u + v + w + [a + b + c > 0]. \) \text{Proof: Without loss of generality assume } a = 0. \text{ Then } d \leq u \leq u + v + w. \text{ If } d < u + v + w \text{ then } d + [\cdots] \leq d + 1 \leq u + v + w \leq u + v + w + [\cdots] \text{ as claimed. If } a + b + c > 0 \text{ then } d + [\cdots] \leq u + v + w + 1 = u + v + w + [\cdots] \text{ as claimed. Otherwise } u + v + w + a + b + c = d \leq 3d \text{ so } d + [u + v + w + a + b + c > 3d] = d \leq u + v + w \leq u + v + w + [\cdots] \text{ as claimed.})

Thus \(\deg U A < \deg(D \rad(U V W A B C/D^3)) \leq \deg(U V W \rad A B C). \) Hence \(\deg A < \deg(V W \rad A B C) \leq 2(\deg A - \deg h) + \deg \rad A B C; \) i.e., \(\deg A > 2\deg h - \deg \rad A B C \) as claimed. \(\square \)
Theorem 2.2. Let \(k \) be a field. Let \(h \) be a positive-degree element of the polynomial ring \(k[x] \). Assume that \(1, 2, 3, \ldots, 3\deg h - 2 \) are invertible in \(k \). Let \(A, B, C \) be distinct nonzero elements of \(k[x] \). If \(\gcd\{A, B, C\} \) is coprime to \(h \) and \(A \equiv B \equiv C \pmod h \) then
\[
\max\{\deg A, \deg B, \deg C\} > 2\deg h - \deg \text{rad } A - \deg \text{rad } B - \deg \text{rad } C \\
+ \deg \text{rad } \gcd\{A, B\} + \deg \text{rad } \gcd\{A, C\} + \deg \text{rad } \gcd\{B, C\}.
\]

Proof. Write \(G = \gcd\{A, B, C\} \). Then \(G \) is coprime to \(h \), so \(A/G \equiv B/G \equiv C/G \pmod h \). By Theorem 2.1,
\[
\max\left\{\deg \frac{A}{G}, \deg \frac{B}{G}, \deg \frac{C}{G}\right\} > 2\deg h - \deg \text{rad } \frac{ABC}{G}\]
\[
\geq 2\deg h - \deg \text{rad } ABC.
\]
Furthermore, \(\deg G \geq \deg \text{rad } G = \deg \text{rad } ABC - \deg \text{rad } A - \deg \text{rad } B - \deg \text{rad } C + \deg \text{rad } \gcd\{A, B\} + \deg \text{rad } \gcd\{A, C\} + \deg \text{rad } \gcd\{B, C\} \) by inclusion-exclusion. Add. \(\square \)

Theorem 2.3. Let \(k \) be a field. Let \(h \) be a positive-degree element of the polynomial ring \(k[x] \). Assume that \(1, 2, 3, \ldots, 3\deg h - 2 \) are invertible in \(k \). Let \(S \) be a finite subset of \(k[x] \setminus \{0\} \), with \(\#S \geq 3 \). If each element of \(S \) is coprime to \(h \), and all the elements of \(S \) are congruent modulo \(h \), then
\[
\max\{\deg A : A \in S\} > \frac{3\#S - 5}{3\#S - 7} \deg h - \frac{6}{(3\#S - 7)\#S} \deg \text{rad } \prod_{A \in S} A.
\]
For example, \(\max\{\deg A : A \in S\} > 1.4\deg h - 0.3 \deg \text{rad } \prod_{A \in S} A \) if \(\#S = 4 \), and \(\max\{\deg A : A \in S\} > 1.25\deg h - 0.15 \deg \text{rad } \prod_{A \in S} A \) if \(\#S = 5 \).

Proof. Define \(d = \max\{\deg A : A \in S\} \) and \(e = \deg \text{rad } \prod_{A \in S} A \). Then
\[
d > 2\deg h - \deg \text{rad } A - \deg \text{rad } B - \deg \text{rad } C \\
+ \deg \text{rad } \gcd\{A, B\} + \deg \text{rad } \gcd\{A, C\} + \deg \text{rad } \gcd\{B, C\}
\]
for any distinct \(A, B, C \in S \) by Theorem 2.2. Average this inequality over all choices of \(A, B, C \) to see that \(d > 2\deg h - 3 \text{avg}_A \deg \text{rad } A + 3 \text{avg}_{A \neq B} \deg \text{rad } \gcd\{A, B\} \). On the other hand, \(e \geq \#S \text{avg}_A \deg \text{rad } A - \binom{\#S}{2} \text{avg}_{A \neq B} \deg \text{rad } \gcd\{A, B\} \) by inclusion-exclusion, so
\[
d + \frac{3}{\#S} e > 2\deg h - \frac{3\#S - 9}{2} \text{avg}_{A \neq B} \deg \text{rad } \gcd\{A, B\}.
\]
Note that \(3\#S - 9 \geq 0 \) since \(\#S \geq 3 \).

One can bound each term \(\deg \text{rad } \gcd\{A, B\} \) by the simple observation that \(A/\gcd\{A, B\} \) and \(B/\gcd\{A, B\} \) are distinct congruent polynomials.
of degree at most \(d - \deg \gcd\{A, B\} \); thus \(d - \deg \gcd\{A, B\} \geq \deg h \), so \(\deg \rad \gcd\{A, B\} \leq d - \deg h \). Hence
\[
d + \frac{3}{#S}e > 2\deg h - \frac{3#S - 9}{2}(d - \deg h);
\]
i.e., \(d > (\frac{3#S - 5}{3#S - 7})\deg h - (\frac{6}{3#S - 7})#S e \).

\[\Box\]

3. Appendix: the ABC theorem

Theorem 3.1 is a typical statement of the Stothers-Mason ABC theorem, included in this paper for completeness. The proof given here is due to Noah Snyder; see [2].

Theorem 3.1. Let \(k \) be a field. Let \(A, B, C \) be nonzero elements of the polynomial ring \(k[x] \) with \(A + B + C = 0 \) and \(\gcd\{A, B, C\} = 1 \). If \(\deg A > \deg \rad ABC \) then \(A' = 0 \).

In fact, \(A' = B' = C' = 0 \). As usual, \(X' \) means the derivative of \(X \); the relevance of derivatives is that \(X/\rad X \) divides \(X' \).

Proof. Note that \(\gcd\{A, B\} = \gcd\{A, B, -(A + B)\} = \gcd\{A, B, C\} = 1 \).

By the same argument, \(\gcd\{A, C\} = 1 \) and \(\gcd\{B, C\} = 1 \).

\(C/\rad C \) divides both \(C \) and \(C' \), so it divides \(C'B - CB' \). Similarly, \(B/\rad B \) divides \(C'B - CB' \). Furthermore, \(C' = -(A' + B') \), so \(C'B - CB' = -(A' + B')B + (A + B)B' = AB' - A'B \); thus \(A/\rad A \) divides \(C'B - CB' \).

The ratios \(A/\rad A, B/\rad B, C/\rad C \) are pairwise coprime, so their product \(ABC/\rad ABC \) divides \(C'B - CB' \). But by hypothesis
\[
\deg \frac{ABC}{\rad ABC} = \deg ABC - \deg \rad ABC \geq \deg BC > \deg(C'B - CB');
\]
so \(C'B - CB' = 0 \); so \(AB' - A'B = 0 \); so \(A \) divides \(A'B \); but \(A \) and \(B \) are coprime, so \(A \) divides \(A' \); but \(\deg A > \deg A' \), so \(A' = 0 \).

\[\Box\]

References

Daniel J. Bernstein
Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
Chicago, IL 60607–7045
E-mail: djb@cr.yp.to