Non-degenerate Hilbert cubes in random sets

par CsABA SÁNDOR

Abstract. A slight modification of the proof of Szemerédi’s cube lemma gives that if a set \(S \subset [1, n] \) satisfies \(|S| \geq \frac{n}{2} \), then \(S \) must contain a non-degenerate Hilbert cube of dimension \(\lfloor \log_2 \log_2 n - 3 \rfloor \). In this paper we prove that in a random set \(S \) determined by \(\Pr\{s \in S\} = \frac{1}{2} \) for \(1 \leq s \leq n \), the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly \(\log_2 \log_2 n + \log_2 \log_2 \log_2 n \) and determine the threshold function for a non-degenerate \(k \)-cube.

1. Introduction

Throughout this paper we use the following notations: let \([1, n] \) denote the first \(n \) positive integers. The coordinates of the vector \(A^{(k,n)} = (a_0, a_1, \ldots, a_k) \) are selected from the positive integers such that \(\sum_{i=0}^{k} a_i \leq n \). The vectors \(B^{(k,n)}, A^{(k,n)} \) are interpreted similarly. The set \(S_n \) is a subset of \([1, n] \). The notations \(f(n) = o(g(n)) \) means \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \). An arithmetic progression of length \(k \) is denoted by \(AP_k \). The rank of a matrix \(A \) over the field \(F \) is denoted by \(r_F(A) \). Let \(\mathbb{R} \) denote the set of real numbers, and let \(\mathbb{F}_2 \) be the finite field of order 2.

Let \(n \) be a positive integer, \(0 \leq p_n \leq 1 \). The random set \(S(n, p_n) \) is the random variable taking its values in the set of subsets of \([1, n] \) with the law determined by the independence of the events \(\{k \in S(n, p_n)\}, 1 \leq k \leq n \) with the probability \(\Pr\{k \in S(n, p_n)\} = p_n \). This model is often used for...
proving the existence of certain sequences. Given any combinatorial number theoretic property \(P \), there is a probability that \(S(n, p_n) \) satisfies \(P \), which we write \(\Pr \{ S(n, p_n) \models P \} \). The function \(r(n) \) is called a threshold function for a combinatorial number theoretic property \(P \) if

(i) When \(p_n = o(r(n)) \), \(\lim_{n \to \infty} \Pr \{ S(n, p_n) \models P \} = 0 \),

(ii) When \(r(n) = o(p(n)) \), \(\lim_{n \to \infty} \Pr \{ S(n, p_n) \models P \} = 1 \),
or visa versa. It is clear that threshold functions are not unique. However, threshold functions are unique within factors \(m(n) \), \(0 < \lim \inf_{n \to \infty} m(n) \leq \lim \sup_{n \to \infty} m(n) < \infty \), that is if \(p_n \) is a threshold function for \(P \) then \(p'_n \) is also a threshold function iff \(p_n = O(p'_n) \) and \(p'_n = O(p_n) \). In this sense we can speak of the threshold function of a property.

We call \(H \subset [1, n] \) a Hilbert cube of dimension \(k \) or, simply, a \(k \)-cube if there is a vector \(A^{(k,n)} \) such that

\[
H = H_{A^{(k,n)}} = \{ a_0 + \sum_{i=1}^{k} \epsilon_i a_i : \epsilon_i \in \{0, 1\} \}.
\]

The positive integers \(a_1, \ldots, a_k \) are called the generating elements of the Hilbert cube. The \(k \)-cube is non-degenerate if \(|H| = 2^k \) i.e. the vertices of the cube are distinct, otherwise it is called degenerate. The maximal dimension of a non-degenerate Hilbert cube in \(S_n \) is denoted by \(H_{\text{max}}(S_n) \), i.e. \(H_{\text{max}}(S_n) \) is the largest integer \(l \) such that there exists a vector \(A^{(l,n)} \) for which the non-degenerate Hilbert cube \(H_{A^{(l,n)}} \subset S_n \).

Hilbert originally proved that if the positive integers are colored with finitely many colors then one color class contains a \(k \)-cube. The density version of theorem was proved by Szemerédi and has since become known as "Szemerédi's cube lemma". The best known result is due to Gunderson and Rödl (see [3]):

Theorem 1.1 (Gunderson and Rödl). For every \(d \geq 3 \) there exists \(n_0 \leq (2^d - 2/\ln 2)^2 \) so that, for every \(n \geq n_0 \), if \(A \subset [1, n] \) satisfies \(|A| \geq 2n^{1-\frac{1}{2d-3}} \), then \(A \) contains a \(d \)-cube.

A direct consequence is the following:

Corollary 1.2. Every subset \(S_n \) such that \(|S_n| \geq \frac{n}{2} \) contains a \(\lfloor \log_2 \log_2 n \rfloor \)-cube.

A slight modification of the proof gives that the above set \(S_n \) must contain a non-degenerate \(\lfloor \log_2 \log_2 n - 3 \rfloor \)-cube.

Obviously, a sequence \(S \) has the Sidon property (that is the sums \(s_i + s_j, s_i \leq s_j, s_i, s_j \in S \) are distinct) iff \(S \) contains no 2-cube. Godbole, Janson, Locantore and Rapoport studied the threshold function for the Sidon property and gave the exact probability distribution in 1999 (see [2]):
Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let $c > 0$ be arbitrary. Let P be the Sidon property. Then with $p_n = cn^{-3/4}$,
\[
\lim_{n \to \infty} \Pr\{S(n, p_n) \models P\} = e^{-\frac{c}{12}}.
\]

Clearly, a subset $H \subset [1, n]$ is a degenerate 2-cube iff it is an AP$_3$. Moreover, an easy argument gives that the threshold function for the event "AP$_3$-free" is $p_n = n^{-2/3}$. Hence

Corollary 1.4. Let $c > 0$ be arbitrary. Then with $p_n = cn^{-3/4}$,
\[
\lim_{n \to \infty} \Pr\{S(n, p_n) \text{ contains no non-degenerate 2-cube}\} = e^{-\frac{c}{12}}.
\]

In Theorem 1.5 we extend the previous Corollary.

Theorem 1.5. For any real number $c > 0$ and any integer $k \geq 2$, if $p_n = cn^{-\frac{k+1}{2k}}$,
\[
\lim_{n \to \infty} \Pr\{S(n, p_n) \text{ contains no non-degenerate } k\text{-cube}\} = e^{-\frac{c^k}{(k+1)k!}}.
\]

In the following we shall find bounds on the maximal dimension of non-degenerate Hilbert cubes in the random set $S(n, \frac{1}{2})$. Let
\[
D_n(\epsilon) = \lfloor \log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1 - \epsilon) \log_2 \log_2 \log_2 n}{\log 2 \log_2 \log_2 n} \rfloor
\]
and
\[
E_n(\epsilon) = \lceil \log_2 \log_2 n + \log_2 \log_2 \log_2 n + \frac{(1 + \epsilon) \log_2 \log_2 \log_2 n}{\log 2 \log_2 \log_2 n} \rceil.
\]

The next theorem implies that for almost all n, $H_{\max}(S(n, \frac{1}{2}))$ concentrates on a single value because for every $\epsilon > 0$, $D_n(\epsilon) = E_n(\epsilon)$ except for a sequence of zero density.

Theorem 1.6. For every $\epsilon > 0$
\[
\lim_{n \to \infty} \Pr\{D_n(\epsilon) \leq H_{\max}(S(n, \frac{1}{2})) \leq E_n(\epsilon)\} = 1.
\]

2. Proofs

In order to prove the theorems we need some lemmas.

Lemma 2.1. For $k_n = o\left(\frac{\log n}{\log \log n}\right)$ the number of non-degenerate k_n-cubes in $[1, n]$ is $(1 + o(1))(\frac{n}{k_{n+1}})^{\frac{1}{k_n}}$, as $n \to \infty$.
Proof. All vectors $A^{(k_n,n)}$ are in 1-1 correspondence with all vectors (v_0,v_1,\ldots,v_{k_n}) with $1 \leq v_1 < v_2 < \cdots < v_{k_n} \leq n$ in \mathbb{R}^{k_n+1} according to the formulas $(a_0,a_1,\ldots,a_{k_n}) \mapsto (v_0,v_1,\ldots,v_{k_n}) = (a_0,a_0+a_1,\ldots,a_0+a_1+\cdots+a_{k_n})$; and $(v_0,v_1,\ldots,v_{k_n}) \mapsto (a_0,a_1,\ldots,a_{k_n}) = (v_0,v_1-v_0,\ldots,v_{k_n}-v_{k_n-1})$. Consequently,

$$\binom{n}{k_n+1} = |\{A^{(k_n,n)} : H_{A^{(k_n,n)}} \text{ is non-degenerate}\}| + |\{A^{(k_n,n)} : H_{A^{(k_n,n)}} \text{ is degenerate}\}|.$$

By the definition of a non-degenerate cube the cardinality of the set $\{A^{(k_n,n)} : H_{A^{(k_n,n)}} \text{ is non-degenerate}\}$ is equal to

$$k_n!|\{\text{non-degenerate } k_n\text{-cubes in } [1,n]\}|,$$

because permutations of a_1,\ldots,a_k give the same k_n-cube. It remains to verify that the number of vectors $A^{(k_n,n)}$ which generate degenerate k_n-cubes is $o\left(\binom{n}{k_n+1}\right)$. Let $A^{(k_n,n)}$ be a vector for which $H_{A^{(k_n,n)}}$ is a degenerate k_n-cube. Then there exist integers $1 \leq u_1 < u_2 < \cdots < u_s \leq k_n$, $1 \leq v_1 < v_2 < \cdots < v_t < k_n$ such that

$$a_0 + a_{u_1} + \cdots + a_{u_s} = a_0 + a_{v_1} + \cdots + a_{v_t},$$

where we may assume that the indices are distinct, therefore $s + t \leq k_n$. Then the equation

$$x_1 + x_2 + \cdots + x_s - x_{s+1} - \cdots - x_{s+t} = 0$$

can be solved over the set $\{a_1, a_2, \ldots, a_{k_n}\}$. The above equation has at most $n^{s+t-1} \leq n^{k_n-1}$ solutions over $[1,n]$. Since we have at most k_n^2 possibilities for (s,t) and at most n possibilities for a_0, therefore the number of vectors $A^{(k_n,n)}$ for which $H_{A^{(k_n,n)}}$ is degenerate is at most $k_n^2 n^{k_n} = o\left(\binom{n}{k_n+1}\right)$. \square

In the remaining part of this section the Hilbert cubes are non-degenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following definition. For two intersecting k-cubes $H_{A^{(k_n,n)}}$, $H_{B^{(k,n)}}$ let $H_{A^{(k,n)}} \cap H_{B^{(k,n)}} = \{c_1,\ldots,c_m\}$ with $c_1 < \cdots < c_m$, where

$$c_d = a_0 + \sum_{l=1}^{k} \alpha_{d,l} a_l = b_0 + \sum_{l=1}^{k} \beta_{d,l} b_l, \quad \alpha_{d,l}, \beta_{d,l} \in \{0,1\}$$

for $1 \leq d \leq m$ and $1 \leq l \leq k$. The rank of the intersection of two k-cubes $H_{A^{(k,n)}}$, $H_{B^{(k,n)}}$ is defined as follows: we say that $r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (s,t)$ if for the matrices $A = (\alpha_{d,l})_{m \times k}$, $B = (\beta_{d,l})_{m \times k}$ we have $r_\mathbb{R}(A) = s$ and $r_\mathbb{R}(B) = t$. The matrices A and B are called matrices of the common vertices of $H_{A^{(k,n)}}$, $H_{B^{(k,n)}}$.
Lemma 2.2. The condition $r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (s, t)$ implies that
\[|H_{A^{(k,n)}} \cap H_{B^{(k,n)}}| \leq 2^{\min\{s,t\}}. \]

Proof. We may assume that $s \leq t$. The inequality $|H_{A^{(k,n)}} \cap H_{B^{(k,n)}}| \leq 2^s$ is obviously true for $s = k$. Let us suppose that $s < k$ and the number of common vertices is greater than 2^s. Then the corresponding $(0,1)$-matrices A and B have more than 2^s different rows, therefore $r_{\mathbb{F}_2}(A) > s$, but we know from elementary linear algebra that for an arbitrary $(0,1)$-matrix M we have $r_{\mathbb{F}_2}(M) \geq r_M(M)$, which is a contradiction. \square

Lemma 2.3. Suppose that the sequences $A^{(k,n)}$ and $B^{(k,n)}$ generate non-degenerate k-cubes. Then

1. \[|\{(A^{(k,n)}, B^{(k,n)}) : r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (s, t)\}| \leq 2^{k^2} \binom{n}{k+1} n^{k+1 - \max\{s,t\}} \]
 for all $0 \leq s, t \leq k$;
2. \[|\{(A^{(k,n)}, B^{(k,n)}) : r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (r, r), |H_{A^{(k,n)}} \cap H_{B^{(k,n)}}| = 2^r\}| \leq 2^{k^2} \frac{n}{k+1} n^{k-r} \]
 for all $0 \leq r < k$;
3. \[|\{(A^{(k,n)}, B^{(k,n)}) : r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (k, k), |H_{A^{(k,n)}} \cap H_{B^{(k,n)}}| > 2^{k-1} \}| \leq 2^{k^2} 2^k \binom{n}{k+1}. \]

Proof. (1) We may assume that $s \leq t$. In this case we have to prove that the number of corresponding pairs $(A^{(k,n)}, B^{(k,n)})$ is at most $\binom{n}{k+1} 2^{k^2} n^{k+1-t}$. We have already seen in the proof of Lemma 2.1 that the number of vectors $A^{(k,n)}$ is at most $\binom{n}{k+1}$. Fix a vector $A^{(k,n)}$ and count the suitable vectors $B^{(k,n)}$. Then the matrix B has t linearly independent rows, namely $r_{\mathbb{R}}((\beta_{dl}^1)_{d \times k}) = t$, for some $1 \leq d_1 < \cdots < d_t \leq m$, where

\[a_0 + \sum_{i=1}^{k} \alpha_{dl} a_i = b_0 + \sum_{i=1}^{k} \beta_{dl} b_i, \quad \alpha_{dl}, \beta_{dl} \in \{0,1\} \quad \text{for } 1 \leq i \leq t. \]

The number of possible b_0s is at most n. For fixed b_0, $\alpha_{dl}a_i, \beta_{dl}b_i$ let us study the system of equations

\[a_0 + \sum_{i=1}^{k} \alpha_{dl} a_i = b_0 + \sum_{i=1}^{k} \beta_{dl} b_i, \quad \alpha_{dl}, \beta_{dl} \in \{0,1\} \quad \text{for } 1 \leq i \leq t. \]

The assumption $r_{\mathbb{R}}((\beta_{dl}^1)_{d \times k}) = t$ implies that the number of solutions over $[1,n]$ is at most n^{k-t}. Finally, we have at most 2^{k^2} possibilities on the left-hand side for $\alpha_{dl}a_i$s and, similarly, we have at most 2^{k^2} possibilities on the right-hand side for $\beta_{dl}b_i$s, therefore the number of possible systems of equations is at most 2^{k^2}.

(2) The number of vectors $A^{(k,n)}$ is $\binom{n}{k+1}$ as in (1). Fix a vector $A^{(k,n)}$ and count the suitable vectors $B^{(k,n)}$. It follows from the assumptions
r(H_{A(k,n)}, H_{B(k,n)}) = (r, r), |H_{A(k)} \cap H_{B(k)}| = 2^r that the vectors \((\alpha_{d,1}, \ldots, \alpha_{d,k}), \ d = 1, \ldots, 2^r\) and the vectors \((\beta_{d,1}, \ldots, \beta_{d,k}), \ d = 1, \ldots, 2^r\), respectively form \(r\)-dimensional subspaces of \(\mathbb{F}_2^n\). Considering the zero vectors of these subspaces we get \(a_0 = b_0\). The integers \(b_1, \ldots, b_k\) are solutions of the system of equations

\[
a_0 + \sum_{l=1}^{k} \alpha_{d,l}a_l = b_0 + \sum_{l=1}^{k} \beta_{d,l}b_l, \quad \alpha_{d,l}, \beta_{d,l} \in \{0, 1\} \quad \text{for } 1 \leq d \leq 2^r.
\]

Similarly to the previous part this system of equations has at most \(n^{k-r}\) solutions over \([1, n]\) and the number of choices for the \(r\) linearly independent rows is at most \(2^{2k^2}\).

(3) Fix a vector \(A^{(k,n)}\). Let us suppose that for a vector \(B^{(k,n)}\) we have \(r(H_{A^{(k,n)}}, H_{B^{(k,n)}}) = (k, k)\) and \(|H_{A^{(k,n)}} \cap H_{B^{(k,n)}}| > 2^{k-1}\). Let the common vertices be

\[
a_0 + \sum_{l=1}^{k} \alpha_{d,l}a_l = b_0 + \sum_{l=1}^{k} \beta_{d,l}b_l, \quad \alpha_{d,l}, \beta_{d,l} \in \{0, 1\} \quad \text{for } 1 \leq d \leq m,
\]

where we may assume that the rows \(d_1, \ldots, d_k\) are linearly independent, i.e. the matrix \(B_k = (\beta_{d,1})_{k \times k}\) is regular. Write the rows \(d_1, \ldots, d_k\) in matrix form as

\[
\begin{align*}
\mathbf{a} &= b_0 \mathbf{1} + B_k \mathbf{b},
\end{align*}
\]

with vectors \(\mathbf{a} = (a_0 + \sum_{i=1}^{k} \alpha_{d,i}a_i)_{k \times 1}\), \(\mathbf{1} = (1)_{k \times 1}\) and \(\mathbf{b} = (b_i)_{k \times 1}\). It follows from (1) that

\[
\mathbf{b} = B_k^{-1}(\mathbf{a} - b_0 \mathbf{1}) = B_k^{-1} \mathbf{a} - b_0 B_k^{-1} \mathbf{1}.
\]

Let \(B_k^{-1} \mathbf{1} = (d_i)_{k \times 1}\) and \(B_k^{-1} \mathbf{a} = (c_i)_{k \times 1}\). Obviously, the number of subsets \(\{i_1, \ldots, i_t\} \subseteq \{1, \ldots, k\}\) for which \(d_{i_1} + \ldots + d_{i_t} \neq 1\) is at least \(2^{k-1}\), therefore there exist \(1 \leq u_1 < \ldots < u_s \leq k\) and \(1 \leq v_1 < \ldots < v_t \leq k\) such that

\[
a_0 + a_{u_1} + \ldots + a_{u_s} = b_0 + b_{v_1} + \ldots + b_{v_t}, \quad d_{v_1} + \ldots + d_{v_t} \neq 1.
\]

Hence

\[
a_0 + a_{u_1} + \ldots + a_{u_s} = b_0 + b_{v_1} + \ldots + b_{v_t} = b_0 + c_{v_1} + \ldots + c_{v_t} - b_0(d_{v_1} + \ldots + d_{v_t})
\]

\[
b_0 = a_0 + a_{u_1} + \ldots + a_{u_s} - c_{v_1} - \ldots - c_{v_t}
\]

\[
1 - (d_{v_1} + \ldots + d_{v_t}).
\]

To conclude the proof we note that the number of sets \(\{u_1, \ldots, u_s\}\) and \(\{v_1, \ldots, v_t\}\) is at most \(2^{2k}\) and there are at most \(2^{k^2}\) choices for \(B_k\) and \(\mathbf{a}\), respectively. Finally, for given \(B_k, \ a, \ b_0, \ 1 \leq u_1 < \ldots < u_s \leq k\) and \(1 \leq v_1 < \ldots < v_t \leq k\), the vector \(B^{(k,n)}\) is determined uniquely. \(\square\)

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p. 41, 95-98.). Let \(X_i\) be the indicator function of the event \(A_i\) and \(S_N = X_1 + \ldots + X_N\). For indices \(i, j\) write \(i \sim j\) if \(i \neq j\) and
the events A_i, A_j are dependant. We set $\Gamma = \sum_{i \sim j} \Pr\{A_i \cap A_j\}$ (the sum over ordered pairs).

Lemma 2.4. If $E(S_n) \to \infty$ and $\Gamma = o(E(S_n)^2)$, then $X > 0$ a.e.

In many instances, we would like to bound the probability that none of the bad events $B_i, i \in I$, occur. If the events are mutually independent, then $\Pr\{\bigcap_{i \in I} B_i\} = \prod_{i \in I} \Pr\{B_i\}$. When the B_i are "mostly" independent, the Janson’s inequality allows us, sometimes, to say that these two quantities are "nearly" equal. Let Ω be a finite set and R be a random subset of Ω given by $\Pr\{r \in R\} = p_r$, these events being mutually independent over $r \in \Omega$. Let $E_i, i \in I$ be subsets of Ω and $X = \sum_{i \in I} X_i$ be the number of E_is contained in R. The event $\cap_{i \in I} B_i$ and $X = 0$ are then identical. For $i, j \in I$, we write $i \sim j$ if $i \neq j$ and $E_i \cap E_j \neq \emptyset$. We define $\Delta = \sum_{i \sim j} \Pr\{B_i \cap B_j\}$, here the sum is over ordered pairs. We set $M = \prod_{i \in I} \Pr\{B_i\}$.

Lemma 2.5 (Janson’s inequality). Let $\varepsilon \in [0, 1]$ and let $B_i, i \in I, \Delta, M$ be as above and assume that $\Pr\{B_i\} \leq \varepsilon$ for all i. Then

$$M \leq \Pr\{\cap_{i \in I} B_i\} \leq M e^{-\frac{\Delta}{2M}}.$$

Proof of Theorem 1.5. Let $H_{A_{1}^{(k,n)}}, \ldots, H_{A_{N}^{(k,n)}}$ be the distinct non-degenerate k-cubes in $[1, n]$. Let B_i be the event $H_{A_{1}^{(k,n)}} \subset S(n, cn^{-\frac{k+1}{2k}})$. Then $\Pr\{B_i\} = c^{2k}n^{-k-1} = o(1)$ and $N = (1 + o(1))\binom{n}{k+1}^\frac{1}{k!}$. It is enough to prove

$$\Delta = \sum_{i \sim j} \Pr\{B_i \cap B_j\} = o(1)$$

since then Janson’s inequality implies

$$\Pr\{S(n, cn^{-\frac{k+1}{2k}}) \text{ does not contain any } k\text{-cubes}\}$$

$$= \Pr\{\cap_{i=1}^{N} B_i\}$$

$$= (1 + o(1))(1 - (cn^{-\frac{k+1}{2k}})^{2k})(1+o(1))\binom{n}{k+1}^\frac{1}{k!}$$

$$= (1 + o(1))e^{-\frac{c^{2k}}{(k+1)!}}.$$
It remains to verify that $\sum_{i \sim j} \Pr\{B_i \cap B_j\} = o(1)$. We split this sum according to the ranks in the following way

$$
\sum_{i \sim j} \Pr\{B_i \cap B_j\} = \sum_{s=0}^{k-1} \sum_{t=0}^{s} \Pr\{B_i \cap B_j\}
$$

$$
= 2 \sum_{s=1}^{k-1} \sum_{t=0}^{s-1} \Pr\{B_i \cap B_j\}
$$

$$
\quad + \sum_{r=0}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
$$

$$
\quad \quad r(H_{A_i^{(k,n)}}, H_{A_j^{(k,n)}}) = (r, r)
$$

$$
\quad |H_{A_i^{(k,n)}} \cap H_{A_j^{(k,n)}}| = 2^r
$$

$$
\quad + \sum_{r=1}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
$$

$$
\quad \quad r(H_{A_i^{(k,n)}}, H_{A_j^{(k,n)}}) = (r, r)
$$

$$
\quad |H_{A_i^{(k,n)}} \cap H_{A_j^{(k,n)}}| < 2^r
$$

$$
\quad + \sum_{r=1}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
$$

$$
\quad \quad r(H_{A_i^{(k,n)}}, H_{A_j^{(k,n)}}) = (k, k)
$$

$$
\quad |H_{A_i^{(k,n)}} \cap H_{A_j^{(k,n)}}| \leq 2^{k-1}
$$

$$
\quad + \sum_{r=1}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
$$

$$
\quad \quad r(H_{A_i^{(k,n)}}, H_{A_j^{(k,n)}}) = (k, k)
$$

$$
\quad |H_{A_i^{(k,n)}} \cap H_{A_j^{(k,n)}}| > 2^{k-1}
$$

The first sum can be estimated by Lemmas 2 and 2.3(1)

$$
\sum_{s=1}^{k} \sum_{t=0}^{s-1} \Pr\{B_i \cap B_j\}
$$

$$
\leq \sum_{s=1}^{k} \sum_{t=0}^{s-1} 2^{2k^2} \left(\begin{array}{c} n \\ k + 1 \end{array} \right) n^{k+1-s} \left(cn^{\frac{k+1}{2}} \right)^{2^{k}-2^t}
$$

$$
= n^{o(1)} \sum_{s=1}^{k} n^{2s-1-k+1} = n^{o(1)} \left(n^{\frac{k+1}{2}} - n^{\frac{k}{2} - k} \right) = o(1),
$$

since the sequence $a_s = 2^{s-1-k+1} - s$ is decreasing for $1 \leq s \leq k + 1 - \log_2(k + 1)$ and increasing for $k + 1 - \log_2(k + 1) < s \leq k$.

To estimate the second sum we apply Lemma 2.3(2)

\[
\sum_{r=0}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\} \leq k-1 \sum_{r=0}^{k-1} 2^{k-1} \left(\begin{array}{c} n \\ r \end{array} \right) n^{k-r} (cn^{k+1}2^{k-r})^{2^{k-1}+1} \leq n^{o(1)} \sum_{r=1}^{k-1} n^{r \frac{k+1}{2^k}} = n^{o(1)} \left(n^{\frac{k+1}{2^k}} + n^{\frac{k+1}{2^k}-(k-1)} \right) = o(1).
\]

The third sum can be bounded using Lemma 2.3(1):

\[
\sum_{r=1}^{k-1} \sum_{i \sim j} \Pr\{B_i \cap B_j\} \leq k-1 \sum_{r=1}^{k-1} 2^{k-1} \left(\begin{array}{c} n \\ r \end{array} \right) n^{k+1-r} (cn^{k+1}2^{k-r})^{2^{k-1}+1} \leq n^{o(1)} \sum_{r=1}^{k-1} n^{r \frac{k+1}{2^k}} = n^{o(1)} \left(n^{\frac{k+1}{2^k}} + n^{\frac{k+1}{2^k}-(k-1)} \right) = o(1).
\]

Similarly, for the fourth sum we apply Lemma 2.3(1)

\[
\sum_{i \sim j} \Pr\{B_i \cap B_j\} \leq n^{o(1)} n^{k+2} (cn^{k+1}2^{k})^{1.5 \cdot 2^k} = o(1).
\]

To estimate the fifth sum we note that \(|H_{A_i}^{(k,n)} \cup H_{A_j}^{(k,n)}| \geq 2^k + 1\). It follows from Lemma 2.3(3) that

\[
\sum_{i \sim j} \Pr\{B_i \cap B_j\} \leq 2^{2k^2+2k} n^{k+1} (cn^{k+1}2^k)^{2k+1} = o(1),
\]

which completes the proof. \(\square\)
Proof of Theorem 1.6. Let \(\epsilon > 0 \) and for simplicity let \(D_n = D_n(\epsilon) \) and \(E_n = E_n(\epsilon) \). In the proof we use the estimations

\[
2^{2^{D_n}} \leq 2^{2 \log_2 \log_2 n + \log_2 \log_2 n + (1-\epsilon \log_2 \log_2 n)}
\]

and

\[
2^{2^{E_{n+1}}} \geq 2^{2 \log_2 \log_2 n + \log_2 \log_2 n + (1+\epsilon \log_2 \log_2 n)}
\]

In order to verify Theorem 1.6 we have to show that

(2) \(\lim_{n \to \infty} \Pr\{S(n, \frac{1}{2}) \text{ contains a } D_n\text{-cube}\} = 1 \)

and

(3) \(\lim_{n \to \infty} \Pr\{S(n, \frac{1}{2}) \text{ contains an } (E_{n+1})\text{-cube}\} = 0. \)

To prove the limit in (4) let \(H_{A_1(D_n, n)}, \ldots, H_{A_N(D_n, n)} \) be the different non-degenerate \(D_n \)-cubes in \([1, n]\), \(B_i \) be the event \(H_{A_i(D_n, n)} \subset S(n, \frac{1}{2}) \), \(X_i \) be the indicator random variable for \(B_i \) and \(S_N = X_1 + \ldots + X_N \) be the number of \(H_{A_i(D_n, n)} \subset S(n, \frac{1}{2}) \). The linearity of expectation gives by Lemma 2.1 and inequality (2)

\[
E(S_N) = NE(X_i) = (1 + o(1)) \left(\frac{n}{D_n + 1} \right) \frac{1}{D_n!} 2^{-2^{D_n}}
\]

\[
\geq n \log_2 \log_2 n + (1+o(1)) \log_2 \log_2 n \log_2 \log_2 n - \log_2 \log_2 n - (1-\epsilon\log_2 \log_2 n) \log_2 \log_2 n
\]

\[
= n(\epsilon + o(1)) \log_2 \log_2 \log_2 n.
\]

Therefore \(E(S_N) \to \infty \), as \(n \to \infty \). By Lemma 2.4 it remains to prove that

\[
\sum_{i \sim j} \Pr\{B_i \cap B_j\} = o(E(S_N)^2)
\]

where \(i \sim j \) means that the events \(B_i, B_j \) are not independent i.e. the cubes \(H_{A_i(D_n, n)}, H_{A_j(D_n, n)} \) have common vertices. We split this sum according to
the ranks

\[
\sum_{i \sim j} \Pr\{B_i \cap B_j\} = \sum_{s=0}^{D_n} \sum_{t=0}^{D_n} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
\]

\[
\leq \sum_{s=1}^{D_n} \sum_{t=0}^{D_n} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
\]

\[
+ 2 \sum_{s=1}^{D_n} \sum_{t=0}^{D_n} \sum_{i \sim j} \Pr\{B_i \cap B_j\}.
\]

The condition \(r(H_{A_i(D_n,n)}(D_n) \cup H_{A_j(D_n,n)}(D_n)) = (s,t)\)

thus by Lemma 2.3(2).

\[
\sum_{i \sim j} \Pr\{B_i \cap B_j\} \leq 2^{2D_n^2} \left(\frac{n}{D_n + 1} \right)^{D_n} 2^{-2D_n + 2^t + 2D_n + 2^t}
\]

\[
= o\left(\left(\frac{n}{D_n + 1} \right)^{2D_n} \right)
\]

\[
= o(E(S_N)^2).
\]

In the light of Lemmas 2 and 2.3(1) the second term in (6) can be estimated as

\[
\sum_{s=1}^{D_n} \sum_{t=0}^{D_n} \sum_{i \sim j} \Pr\{B_i \cap B_j\}
\]

\[
\leq \sum_{s=1}^{D_n} \sum_{t=0}^{D_n} \left(\frac{n}{D_n + 1} \right)^{2D_n} n^{D_n} 2^{-2D_n + 2^t + 2^t}
\]

\[
= \left(\frac{n}{D_n + 1} \right)^{2D_n} n^{o(1)} \sum_{s=1}^{D_n} \sum_{t=0}^{D_n} 2^{2^s}
\]

\[
= \left(\frac{n}{D_n + 1} \right)^{2D_n} n^{o(1)} \sum_{s=1}^{D_n} 2^{2^s}.
\]
Finally, the function \(f(x) = \frac{2^x}{x^r} \) decreases on \((-\infty, \log_2 \log n - 2 \log_2 \log 2]\) and increases on \([\log_2 \log n - 2 \log_2 \log 2, \infty)\), therefore by (2)

\[
\sum_{s=1}^{D_n} \frac{2^{2s}}{n^r} = n^{o(1)} \left(\frac{4}{n} + \frac{2^{2D_n}}{nD_n} \right) = n^{-1+o(1)},
\]

which proves the limit in (4).

In order to prove the limit in (5) let \(H_{C_{k+1}^n} \), \(\cdots \), \(H_{C_k^n} \) be the distinct \((E_n+1)\)-cubes in \([1, n]\) and let \(F_i \) be the event \(H_{C_{k+1}^n} \subset S(n, \frac{1}{2}) \).

By (3) we have

\[
\Pr\{S_n \text{ contains an } (E_n + 1)\text{-cube}\} = \Pr\{\bigcup_{i=1}^{K} F_i\} \leq \sum_{i=1}^{K} \Pr\{F_i\} \leq \left(\frac{n}{E_n + 2}\right) 2^{-2E_n+1} \leq \frac{n^{\log_2 \log n + (1+o(1)) \log_2 \log_2 n}}{n^{\log_2 \log n + (1+\epsilon + o(1)) \log_2 \log_2 n}} = o(1),
\]

which completes the proof. \(\square \)

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a random sequence. A natural problem would be to give analogous theorems for Hilbert cubes, where degenerate cubes are allowed. In this situation the dominant terms may come from arithmetic progressions. An \(AP_{k+1} \) forms a \(k \)-cube. One can prove by the Janson inequality (see Lemma 2.5) that for a fixed \(k \geq 2 \)

\[
\lim_{n \to \infty} \Pr\{S(n, cn^{-2/5}) \text{ contains no } AP_{k+1}\} = e^{-\frac{k+1}{2k}}.
\]

An easy argument shows (using Janson’s inequality again) that for all \(c > 0 \), with \(p_n = cn^{-2/5} \)

\[
\lim_{n \to \infty} \Pr\{S(n, p_n) \text{ contains no 4-cubes}\} = e^{-\frac{5}{8}}.
\]

Conjecture 3.1. For \(k \geq 4 \)

\[
\lim_{n \to \infty} \Pr\{S(n, cn^{-2/5}) \text{ contains no } k\text{-cubes}\} = e^{-\frac{k+1}{2k}}.
\]

A simple calculation implies that in the random sequence \(S(n, \frac{1}{2}) \) the length of the longest arithmetic progression is a.e. nearly \(2 \log_2 n \), therefore it contains a Hilbert cube of dimension \((2 - \epsilon) \log_2 n \).

Conjecture 3.2. For every \(\epsilon > 0 \)

\[
\lim_{n \to \infty} \Pr\{\text{the maximal dimension of Hilbert cubes in } S(n, \frac{1}{2}) \text{ is } (2 + \epsilon) \log_2 n\} = 1.
\]
N. Hegyvári (see [5]) studied the special case where the generating elements of Hilbert cubes are distinct. He proved that in this situation the maximal dimension of Hilbert cubes is a.e. between $c_1 \log n$ and $c_2 \log n \log \log n$. In this problem the lower bound seems to be the correct magnitude.

References

Csaba Sándor
Institute of Mathematics
Budapest University of Technology and Economics
Egry J. u. 1., H-1111 Budapest, Hungary
E-mail: csandor@math.bme.hu