Characterizations of groups generated by Kronecker sets

by András BIRÓ

Abstract. In recent years, starting with the paper [B-D-S], we have investigated the possibility of characterizing countable subgroups of the torus $T = \mathbb{R}/\mathbb{Z}$ by subsets of \mathbb{Z}. Here we consider new types of subgroups: let $K \subseteq T$ be a Kronecker set (a compact set on which every continuous function $f : K \to T$ can be uniformly approximated by characters of T), and G the group generated by K. We prove (Theorem 1) that G can be characterized by a subset of \mathbb{Z}^2 (instead of a subset of \mathbb{Z}). If K is finite, Theorem 1 implies our earlier result in [B-S]. We also prove (Theorem 2) that if K is uncountable, then G cannot be characterized by a subset of \mathbb{Z} (or an integer sequence) in the sense of [B-D-S].