THE CROSS-RATIO IN HJELMSLEV PLANES

Rastislav Jurga, Košice

(Received January 31, 1996)

Abstract. The cross-ratio in Hjelmslev planes is defined. The cross-ratio in the Hjelmslev plane \(H(R) \) is independent of the choice of a coordinate system on a line.

Keywords: Hjelmslev plane over a special local ring, cross-ratio in Hjelmslev plane

MSC 1991: 51C05, 51E30

1. Introduction

A special local ring is a finite commutative local ring \(R \) the ideal \(I \) of divisors of zero of which is principal. Suppose that \(R \) is not a field and that the characteristic of \(R \) is odd. Denote the factor ring \(R/I \) by the symbol \(\overline{R} \). Further denote the set of all regular elements of \(R \) by the symbol \(R^* \), thus \(R^* = R - I \).

Definition 1.1. A projective Hjelmslev plane (we will denote it by \(H(R) \)) over \(R \) is an incidence structure \(H(R) = (B; \mathcal{P}; \mathcal{T}) \) defined in the following way:

- the elements of \(B \)—the points of \(H(R) \) are classes of ordered triples \((\lambda x_1; \lambda x_2; \lambda x_3) \) where \(\lambda \in R^* \), \(x_1, x_2, x_3 \in R \) and at least one \(x_i \) is regular;
- the elements of \(\mathcal{P} \)—the lines of \(H(R) \) are classes of ordered triples \((\alpha a_1; \alpha a_2; \alpha a_3) \) where \(\alpha \in R^* \), \(a_1, a_2, a_3 \in R \) and at least one \(a_i \) is regular.

A point \(X = [x_1; x_2; x_3] \) is incident to the line \(a = [a_1; a_2; a_3] \) if and only if

\[
(1.1) \quad a_1 x_1 + a_2 x_2 + a_3 x_3 = 0.
\]

Remark 1.1. The canonical homomorphism \(\Phi: R \to R/I = \overline{R} \) induces a homomorphism of \(H(R) \) onto the projective plane \(\pi(\overline{R}) \).
We will call the points \(X, Y \in H(R) \) neighbouring if \(X = Y \) where \(\Phi(X) = X, \Phi(Y) = Y \). Similarly we will call points \(X, Y \in H(R) \) substantially different if \(X \neq Y \). Two lines are neighbouring if there are points \(A_1, A_2 \in \mathcal{L}, A_1 \neq A_2 \) such that \(A_1 \mathcal{L} a, b \) and \(A_2 \mathcal{L} a, b \). Let \(X \) be a subset of the \(R \)-modul \(M \) and let \(j: X \rightarrow M \) be an insertion of the subset \(X \) into \(M \). Then \(M(R) \) is called the free modul over \(X \) if for an arbitrary function \(f: X \rightarrow A \) into the \(R \)-modul \(A \) there is exactly one linear mapping \(t: M(R) \rightarrow A \) such that \(t \circ j = f \).

Remark 1.2. The analytic model of the Hjelmslev plane, introduced by definition 1.1 is really a free modul over \(R \) with a factorization defined in the following way: triples \((x_1; x_2; x_3) \) and \((x'_1; x'_2; x'_3) \) are identical if there is \(\lambda \in \mathbb{R}^+ \) such that \(x'_i = \lambda x_i \) for \(i = 1, 2, 3 \) and we do not consider the zero triple.

2. The construction and proof of theorem

Definition 2.1. A coordinate system in \(H(R) \) is an ordered quadruple of points \(E_1, E_2, E_3, E_4 \) such that the points \(\overline{E_1}, \overline{E_2}, \overline{E_3}, \overline{E_4} \) generate a coordinate system in \(\pi(R) \).

If a point \(X = [x_1; x_2; x_3] \) is given by the vector \(x = (x_1; x_2; x_3) \), we write \(X = (x) \).

Lemma 2.1. Let \(M(R) \) be a free modul over \(R \) and let \(e_1, e_2, e_3 \) be a basis of \(M(R) \). Then the points \(E_1 = (e_1), E_2 = (e_2), E_3 = (e_3), E_4 = (e_1 + e_2 + e_3) \) generate the coordinate system in the Hjelmslev plane \(H(R) \) corresponding to the modul \(M(R) \).

Proof. It is necessary to prove that the points \(\overline{E_1}, \overline{E_2}, \overline{E_3}, \overline{E_4} \) generate a coordinate system in \(\pi(R) \). Obviously \(\overline{e_1}, \overline{e_2}, \overline{e_3} \) form a basis of a vector space over \(R \) and thus the vectors \(\overline{e_1}, \overline{e_2}, \overline{e_3} \) are linearly independent. It follows that the points \(\overline{E_1} = (\overline{e_1}), \overline{E_2} = (\overline{e_2}), \overline{E_3} = (\overline{e_3}) \) and \(\overline{E_4} = (\overline{e_1} + \overline{e_2} + \overline{e_3}) \) are not on a unique line. □

Conversely, we have

Lemma 2.2. Let \(E_1, E_2, E_3, E_4 \) be a coordinate system in \(H(R) \). Then there is a basis of the modul \(M(R) \) such that \((e_1) = E_1, (e_2) = E_2, (e_3) = E_3, (e_1 + e_2 + e_3) = E_4 \).

Proof. Let \(E_1 = (b_1), E_2 = (b_2), E_3 = (b_3) \) and \(E_4 = (b_4) \). Because \(\{b_1, b_2, b_3\} \) is a basis of \(M(R) \) the vector \(b_4 \) can be expressed in the form

\[
b_4 = \beta_1 b_1 + \beta_2 b_2 + \beta_3 b_3.
\]
If we denote $c_1 = \beta_1 b_1$, $c_2 = \beta_2 b_2$, $c_3 = \beta_3 b_3$ then c_1, c_2, c_3 are the vectors from the statement of the lemma.

Let E_1, E_2, E_3, E_4 and E'_1, E'_2, E'_3, E'_4 be coordinate systems in $H(R)$. If c_1, c_2, c_3 and c'_1, c'_2, c'_3 are the corresponding bases of the modul $M(R)$ then there is a regular matrix $A = [a_{ij}]$ such that

$$c'_i = \sum_j a_{ij} c_j, \quad i = 1, 2, 3.$$

Let $X_E = [x_1; x_2; x_3]$, $X'_E = [x'_1; x'_2; x'_3]$. Then

$$x = \sum_i x'_i c'_i = \sum_i x'_i \sum_j a_{ij} c_j = \sum_j \left(\sum_i x'_i a_{ij} \right) c_j = \sum_j x_j c_j.$$

Comparing the two identities, we get

$$x_j = \sum_i x'_i a_{ij}. \quad (2.1)$$

The relation (2.1) can be written also in the form

$$X_E = X'_E A, \quad X'_E = X_E A^{-1}. \quad (2.2)$$

Let an invertible matrix A and a coordinate system E_1, E_2, E_3, E_4 be given, then points E'_1, E'_2, E'_3, E'_4 generate a coordinate system and the corresponding vectors of the point $X \in H(R)$ satisfy

$$X_E = X'_E A.$$

Let the special local ring R be given. We introduce a set Ω by

$$\Omega \cap R = \emptyset, \quad |\Omega| = |I|. \quad (2.3)$$

Thus there is a bijective mapping ω such that

$$\omega: I \rightarrow \Omega, \quad \omega: i \rightarrow \omega_i = \omega(i), \quad i \in I \quad (2.4)$$

where ω_i are “inverse” elements of elements $i \in I$, thus $\omega_i \sim 1/i$. Ω is the set of “infinities” corresponding to singular elements. Define an extension of the canonical homomorphism Φ to the set $R \cup \Omega$, let us put

$$\Phi(\Omega) = \infty. \quad (2.5)$$

245
Let \(A, B, E \) be three substantially different points generating a coordinate system on a line. Then every point \(X \) of this line can be expressed uniquely (the single-valuedness guarantees the point \(E \)) in the form

\[
X = sA + tB
\]

and hence the point \(X = [s; t] \) is determined by the pair \((s, t) \).

On the line with the coordinate system \(A, B, E \) let us have points \(P_1, P_2, P_3, P_4 \) where \(P_1 = s_1 A + t_1 B \) thus \(P_1 = [s_1; t_1] \).

Definition 2.2. The cross-ratio of an ordered quadruple of points \(P_1, P_2, P_3, P_4 \) on a line in \(\mathcal{H}(\mathbb{R}) \), of which at least three are substantially different is an element \((P_1 P_2 P_3 P_4) \in R \cup \Omega \) which is defined by relations

\[
(P_1 P_2 P_3 P_4) = \begin{vmatrix} s_1 & t_1 \\ s_2 & t_2 \\ s_3 & t_3 \\ s_4 & t_4 \end{vmatrix}
\]

if points \(P_1 P_4 \) and \(P_2 P_3 \) are substantially different,

\[
(P_1 P_2 P_3 P_4) = \omega(P_1 P_2 P_3 P_4)
\]

if points \(P_1, P_4 \) and \(P_2, P_3 \) are neighbouring. Suppose that points \(P_1, P_3 \) and \(P_2, P_4 \) are substantially different.

Remark. If \(\mathcal{H} \) is a field, \(I = \{0\} \) then Definition 2.2 is the same as the definition of the cross-ratio in a projective plane.

Theorem 2.3. The cross-ratio introduced by relations 2.7 and 2.8 is independent of the choice of a coordinate system on the line.

Proof. Let a line \(p \in \mathcal{H}(\mathbb{R}) \) be given and on this line let us have coordinate systems \(A, B, E \) and \(A', B', E' \). Let \(P_1, P_2, P_3, P_4 \) be points on the given line \(p \) whose the cross-ratio we want to investigate. There is obviously a linear transformation which maps the points \(A, B \) to the points \(A', B' \) on \(p \). We want to verify that the cross-ratio is independent of the choice of the coordinate points on the line. Thus

\[
(P_1 P_2 P_3 P_4)_{A'B'} = (P_1 P_2 P_3 P_4)_{A'B'}.
\]

We have

\[
A' = a_1 A + a_2 B \\
B' = b_1 A + b_2 B
\]

We have
and thus
\[P_1 = s_1A' + t_1B' \]
and after a substitution we get
\[P_1 = (s_1'a_1 + t_1'b_1)A + (s_1'a_2 + t_1'b_2)B = s_1A + t_1B, \quad i = 1, 2, 3, 4. \]

By direct calculation we obtain \((P_1P_2, P_3P_4)_{AB} = (P_1P_2, P_3P_4)_{AB'}\) which was to be proved. \(\square\)

References

Author’s address: Rastislav Jurga, Katedra aplikovanej matematiky, Podnikovohospodárska fakulta v Košiciach Ekonomickej univerzity v Bratislave, Tajovského 11, 041 30 Košice, Slovakia, e-mail: jurga@fh.euke.sk.